Electrical Engineering, B.S.E.E.

Degree Offered
- Bachelor of Science in Electrical Engineering (B.S.E.E.)

Nature of the Program

Electrical engineers design, develop, test, and oversee the manufacture and maintenance of equipment that uses electricity, including subsystems for power generation and transmission, sensors, electronics, instrumentation, controls, communications and signal processing. The Bachelor of Science in Electrical Engineering program is accredited by the Engineering Accreditation Commission of ABET, https://www.abet.org.

In the first two years of electrical engineering, coursework is limited to those subjects that are essential as preparatory courses for more technical courses in the third and fourth years. Fundamental courses in electrical engineering are introduced in the second year. In the third and fourth years, the curriculum provides advanced instruction through required courses and electives. These electives are included in the curriculum to allow the student to acquire additional depth in the student’s selected field of electrical engineering.

Concentration Areas

Each student must select a concentration area from the list below. Students should check with instructors of the newly developed courses that are being offered under EE/CpE/CS 493 to determine what emphasis area they fall under. Students should also be certain that this information is being recorded in their advising file.

1. Power Systems: The cost and reliability of electricity plays a critical role in the quality of life and price of all manufactured goods. Advances in power electronics devices and computers are improving the efficiency of electromechanical devices. Electric deregulation in many states is offering retail customers an opportunity to select their electricity supplier and reduce cost. Improvements in technologies such as fuel cells, micro-turbines, wind turbines and photovoltaic systems offer new choices for power generation. Siting of distributed generation sources near the loads and operating power system under deregulation offer new challenges for power engineers.

2. Control Systems: Control theory is fundamental to any system that is required to behave in a desired manner. Such systems include all engineering systems such as mechanical, chemical, electrical and computer systems as well as many other dynamical systems such as economic markets. Control theory therefore has a broad range of applications. This track interests those students who wish to apply technology to control dynamical systems. Signals from sensors, usually processed by a computer, are necessary for proper control of a system. Consequently, the student interested in the control systems track will take a course in digital control and at least two additional courses in control systems, digital signal processing and/or applications such as control of power systems. Additional courses that are useful are mathematical courses such as linear algebra and complex variable analysis.

3. Electronics: Electronics spans a number of large technical specialties within CSEE. A solid understanding of device operation and their limitations is key to good electronic design, be it the design of individual devices or the design of complex electronic systems. Several programming tools will be introduced to the students during their training in this emphasis area to support the development of this understanding. In the core course required in this emphasis area, the students will model devices using pSpice and layout electronic circuits using VLSI design rules. Additional electronic design concepts will be introduced in the technical electives. The following areas within electronics are emphasized at WVU based upon the expertise of the LCSEE faculty members: electronic device design and fabrication, analog electronic circuit design and applications, and optical device design and applications.

4. Communications and Signal Processing: Communications and signal processing are interrelated fields that play an important role in today’s information driven economy. Signal processing involves the use of programmable computer architectures to operate on physical-world signals. Signal processors are found within modern control systems, biomedical applications, and communication devices. Communications is the conveyance of information from one location to another. The capacity of a communications system is limited by the random noise in the channel. The communication channel may be a fiber optic cable, a local or wide area computer network, or the radio frequency spectrum.

5. Bioengineering and Biometrics: Bioengineering is the multidisciplinary application of engineering to medicine and biology, including such areas as biomedical signal and image processing, medical informatics, and biomedical instrumentation. Bioengineering work can include the development of new technologies for use in medicine and biology or the use of engineering techniques to study issues in biology and medicine. Biometrics is a specific area of bioengineering in which biological signatures (fingerprint, voice, face, DNA) is used for identification or authentication in criminal justice, e-commerce, and medical applications. Specific LCSEE projects in these areas include signal processing for prediction of sudden cardiac death in an animal model of heart failure, development of algorithms for arrhythmia detection in implanted medical devices, telemedicine for rural health care delivery in West Virginia, analysis of temporal fingerprint images for determination of vitality, CMOS fingerprint sensor design and modeling, neural net fingerprint matching, and 3-D craniofacial reconstruction. At the undergraduate level, these projects impact courses and create opportunities for senior design projects and undergraduate research experiences.

6. Computers: Computers have become an important part of the technology used by engineers and a very important part of many technological systems and products. The computer emphasis area is designed to provide an electrical engineer with the basic understanding of how to use
Electrical Engineering, B.S.E.E.

computers and microprocessors. When this track is completed, the electrical engineer should be able to develop, program, and use systems with embedded microcomputers.

Click here to view the Suggested Plan of Study (p. 6)

Curriculum in Electrical Engineering

General Education Foundations

Please use this link to view a list of courses that meet each GEF requirement. (http://registrar.wvu.edu/gef/)

NOTE: Some major requirements will fulfill specific GEF requirements. Please see the curriculum requirements listed below for details on which GEFs you will need to select.

General Education Foundations

F1 - Composition & Rhetoric

- ENGL 101
- ENGL 102
- or ENGL 103

Introduction to Composition and Rhetoric and Composition, Rhetoric, and Research

Accelerated Academic Writing

F2A/F2B - Science & Technology

4-6

F3 - Math & Quantitative Reasoning

3-4

F4 - Society & Connections

3

F5 - Human Inquiry & the Past

3

F6 - The Arts & Creativity

3

F7 - Global Studies & Diversity

3

F8 - Focus (may be satisfied by completion of a minor, double major, or dual degree)

9

Total Hours

31-37

Please note that not all of the GEF courses are offered at all campuses. Students should consult with their advisor or academic department regarding the GEF course offerings available at their campus.

Degree Requirements

Students must meet the following criteria to qualify for a Bachelor of Science in Electrical Engineering degree:

- Complete a minimum of 127 credit hours
- Satisfy WVU's undergraduate degree requirements
- Satisfy Statler College's undergraduate degree requirements (http://catalog.wvu.edu/undergraduate/collegeofengineeringandmineralresources/#policiestext)
- Complete all courses listed in the curriculum requirements with the required minimum grades
- Attain an overall grade point average of 2.25 or better
- Attain a WVU grade point average of 2.25 or better
- Attain a Statler grade point average of 2.25 or better
- A maximum of one math or science courses with a grade of D+, D, or D- may apply towards a Statler College degree
- Complete a survey regarding their academic and professional experiences at WVU, as well as post-graduation job placement or continuing education plans.

The Statler GPA is computed based on all work taken at WVU with a subject code within Statler College (BIOM, BMEG, CE, CHE, CPE, CS, CSEE, CYBE, EE, ENGR, IENG, IH&S, MAE, MINE, PDA, PNGE, SAFM, SENG) excluding ENGR 140, ENGR 150, and CS 101. The WVU GPA is computed based on all work taken at WVU. The Overall GPA is computed based on all work taken at WVU and transfer work.

Curriculum Requirements

University Requirements

16

Fundamentals of Engineering Requirements

5

Math and Science Requirements

34

Electrical Engineering Program Requirements

72

Total Hours

127
University Requirements

General Education Foundations (GEF) 1, 2, 3, 4, 5, 6, 7, and 8 (31-37 Credits)
Outstanding GEF Requirements 1, 5, 6, and 7
ENGR 191 First-Year Seminar

Total Hours 16

Fundamentals of Engineering Requirements

A minimum grade of C- is required in all Fundamentals of Engineering courses.
ENGR 101 Engineering Problem Solving 1
Engineering Problem Solving (Select one of the following):
CHE 102 Introduction to Chemical Engineering
ENGR 102 Engineering Problem-Solving 2
ENGR 103 Introduction to Nanotechnology Design
MAE 102 Introduction to Mechanical and Aerospace Engineering Design

Total Hours 5

Math and Science Requirements

A minimum grade of C- is required in all Math and Science courses.
CHEM 115 & 115L Fundamentals of Chemistry 1 and Fundamentals of Chemistry 1 Laboratory (GEF 2B)
Calculus I (GEF 3):
MATH 155 Calculus 1
MATH 153 & MATH 154 Calculus 1a with Precalculus and Calculus 1b with Precalculus
MATH 156 Calculus 2
MATH 251 Multivariable Calculus
MATH 261 Elementary Differential Equations
PHYS 111 & 111L General Physics 1 and General Physics 1 Laboratory (GEF 8)
PHYS 112 & 112L General Physics 2 and General Physics 2 Laboratory (GEF 8)
STAT 215 Introduction to Probability and Statistics

Math/Science Elective (Select one of the following):
BIOL 115 & 115L Principles of Biology and Principles of Biology Laboratory
CHEM 116 & 116L Fundamentals of Chemistry 2 and Fundamentals of Chemistry 2 Laboratory
MATH 343 Introduction to Linear Algebra
MATH 375 Applied Modern Algebra
MATH 420 Numerical Analysis 1
MATH 441 Applied Linear Algebra
MATH 456 Complex Variables
MATH 465 Partial Differential Equations
PHYS 211 Introduction to Mathematical Physics
PHYS 314 Introductory Modern Physics
PHYS 321 Optics
PHYS 331 Theoretical Mechanics 1
PSIO 241 Elementary Physiology
PSIO 441 Mechanisms of Body Function
STAT 312 Intermediate Statistical Methods
STAT 331 Sampling Methods
Electrical Engineering Program Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 201</td>
<td>Principles of Microeconomics (GEF 4)</td>
<td>3</td>
</tr>
<tr>
<td>CPE 271</td>
<td>Introduction to Digital Logic Design</td>
<td>3</td>
</tr>
<tr>
<td>CPE 272</td>
<td>Digital Logic Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CPE 310</td>
<td>Microprocessor Systems</td>
<td>3</td>
</tr>
<tr>
<td>CPE 311</td>
<td>Microprocessor Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CS 110</td>
<td>Introduction to Computer Science</td>
<td>4</td>
</tr>
<tr>
<td>EE 221</td>
<td>Introduction to Electrical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EE 222</td>
<td>Introduction to Electrical Engineering Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>EE 223</td>
<td>Electrical Circuits</td>
<td>3</td>
</tr>
<tr>
<td>EE 224</td>
<td>Electrical Circuits Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>EE 327</td>
<td>Signals and Systems 1</td>
<td>3</td>
</tr>
<tr>
<td>EE 328</td>
<td>Signals and Systems Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>EE 329</td>
<td>Signals and Systems 2</td>
<td>3</td>
</tr>
<tr>
<td>EE 335</td>
<td>Electromechanical Energy Conversion and Systems</td>
<td>3</td>
</tr>
<tr>
<td>EE 336</td>
<td>Electromechanical Energy Conversion and Systems Lab</td>
<td>1</td>
</tr>
<tr>
<td>EE 345</td>
<td>Engineering Electromagnetics</td>
<td>3</td>
</tr>
<tr>
<td>EE 251</td>
<td>Digital Electronics</td>
<td>3</td>
</tr>
<tr>
<td>EE 252</td>
<td>Digital Electronics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>EE 355</td>
<td>Analog Electronics</td>
<td>3</td>
</tr>
<tr>
<td>EE 356</td>
<td>Analog Electronics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CSEE 380</td>
<td>Engineering Professionalism Seminar</td>
<td>1</td>
</tr>
<tr>
<td>CSEE 480</td>
<td>Capstone Project - Design</td>
<td>2</td>
</tr>
<tr>
<td>or EE 480</td>
<td>Capstone Project - Design</td>
<td></td>
</tr>
<tr>
<td>CSEE 481</td>
<td>Capstone Project - Implementation</td>
<td>3</td>
</tr>
<tr>
<td>or EE 481</td>
<td>Capstone Project - Implementation</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>Engineering Science Elective (Select one of the following):</td>
<td>3</td>
</tr>
<tr>
<td>CE 443</td>
<td>Environmental Science and Technology</td>
<td></td>
</tr>
<tr>
<td>CHE 201</td>
<td>Material and Energy Balances 1</td>
<td></td>
</tr>
<tr>
<td>CHE 366</td>
<td>Materials Science</td>
<td></td>
</tr>
<tr>
<td>IENG 316</td>
<td>Industrial Quality Control</td>
<td></td>
</tr>
<tr>
<td>IENG 377</td>
<td>Engineering Economy</td>
<td></td>
</tr>
<tr>
<td>MAE 241</td>
<td>Statics</td>
<td></td>
</tr>
<tr>
<td>MAE 320</td>
<td>Thermodynamics</td>
<td></td>
</tr>
<tr>
<td>Technical Electives (300 level or higher in BIOM, BMEG, CE, CHE, CPE, CS, CYBE, EE, IENG, MAE, MINE, PNGE, BIOL, CHEM, PHYS, STAT, OR MATH courses)*</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Concentration Area (CA) Technical Electives (Selected from one of the CAs below)</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>CA1: Power Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE 435</td>
<td>Introduction to Power Electronics</td>
<td></td>
</tr>
<tr>
<td>EE 431</td>
<td>Electrical Power Distribution Systems</td>
<td></td>
</tr>
<tr>
<td>EE 436</td>
<td>Power Systems Analysis</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 453</td>
<td>Data and Computer Communications</td>
<td></td>
</tr>
<tr>
<td>CS 465</td>
<td>Cybersecurity Principles and Practice</td>
<td></td>
</tr>
<tr>
<td>EE 411</td>
<td>Fundamentals of Control Systems</td>
<td></td>
</tr>
<tr>
<td>EE 413</td>
<td>Introduction to Digital Control</td>
<td></td>
</tr>
<tr>
<td>EE 431</td>
<td>Electrical Power Distribution Systems</td>
<td></td>
</tr>
<tr>
<td>EE 436</td>
<td>Power Systems Analysis</td>
<td></td>
</tr>
</tbody>
</table>
Electrical Engineering, B.S.E.E.

CA2: Control Systems

Select one of the following:
- **EE 411**: Fundamentals of Control Systems
- **EE 413**: Introduction to Digital Control

Select two of the following:
- **EE 411**: Fundamentals of Control Systems
- **EE 413**: Introduction to Digital Control
- **EE 435**: Introduction to Power Electronics
- **EE 461**: Introduction to Communications Systems
- **EE 463**: Digital Signal Processing Fundamentals

CA3: Electronics

EE 450: Device Design and Integration

Select two of the following:
- **EE 435**: Introduction to Power Electronics
- **EE 437**: Fiber Optics Communications
- **EE 445**: Introduction to Antennas
- **EE 455**: Introduction to Microfabrication
- **EE 457**: Fundamentals of Photonics
- **PHYS 321**: Optics
- **PHYS 471**: Solid State Physics

CA4: Communications & Signal Processing

Choose one of the following:
- **EE 437**: Fiber Optics Communications
- **EE 461**: Introduction to Communications Systems
- **EE 463**: Digital Signal Processing Fundamentals

Select two of the following:
- **BIOM 426**: Biometric Systems
- **CPE 442**: Introduction to Digital Computer Architecture
- **CPE 462**: Wireless Networking
- **CS 453**: Data and Computer Communications
- **EE 411**: Fundamentals of Control Systems
- **EE 413**: Introduction to Digital Control
- **EE 437**: Fiber Optics Communications
- **EE 445**: Introduction to Antennas
- **EE 461**: Introduction to Communications Systems
- **EE 463**: Digital Signal Processing Fundamentals
- **EE 465**: Introduction to Digital Image Processing
- **EE 467**: Digital Speech Processing

CA5: Bioengineering and Biometrics

EE 425: Bioengineering

Select one of the following:
- **BIOM 426**: Biometric Systems
- **EE 463**: Digital Signal Processing Fundamentals
- **EE 465**: Introduction to Digital Image Processing

Select one of the following:
- **BIOM 426**: Biometric Systems
- **CHEM 231 & 231L**: Organic Chemistry: Brief Course and Organic Chemistry: Brief Course Laboratory
- **CHEM 233 & 233L**: Organic Chemistry 1 and Organic Chemistry 1 Laboratory
- **CHEM 234 & 234L**: Organic Chemistry 2 and Organic Chemistry 2 Laboratory
Electrical Engineering, B.S.E.E.

EE 463 Digital Signal Processing Fundamentals
EE 465 Introduction to Digital Image Processing
PSIO 241 Elementary Physiology
or PSIO 441 Mechanisms of Body Function

CA6: Computers

Option 1
CPE 312 Microcomputer Structures and Interfacing
CPE 313 Microcomputer Structures and Interfacing Laboratory
Select two of the following:
CPE 435 Computer Incident Response
CPE 442 Introduction to Digital Computer Architecture
CPE 484 Real-Time Systems Development

Option 2
CPE 435 Computer Incident Response
CPE 442 Introduction to Digital Computer Architecture
CPE 484 Real-Time Systems Development

Total Hours 72

* Excludes any 490, 491, 495, Non-LCSEE 493

Suggested Plan of Study

It is important for students to take courses in the order specified as closely as possible; all prerequisites and concurrent requirements must be observed. A typical B.S.E.E. degree program that completes degree requirements in four years is as follows.

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Hours</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 115 & 115L (GEF 2)</td>
<td>4 ENGR 102</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 101 (GEF 1)</td>
<td>3 MATH 156 (GEF 8)</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 101</td>
<td>2 PHYS 111 & 111L (GEF 8)</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 191</td>
<td>1 GEF 6</td>
<td>3</td>
</tr>
<tr>
<td>MATH 155 (GEF 3)</td>
<td>4 GEF 7</td>
<td>3</td>
</tr>
<tr>
<td>GEF 5</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

| Total | 17 | 17 |

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Hours</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPE 271</td>
<td>3 CS 110</td>
<td>4</td>
</tr>
<tr>
<td>CPE 272</td>
<td>1 EE 223</td>
<td>3</td>
</tr>
<tr>
<td>EE 221</td>
<td>3 EE 224</td>
<td>1</td>
</tr>
<tr>
<td>EE 222</td>
<td>1 EE 251</td>
<td>3</td>
</tr>
<tr>
<td>MATH 251</td>
<td>4 EE 252</td>
<td>1</td>
</tr>
<tr>
<td>PHYS 112 & 112L (GEF 8)</td>
<td>4 MATH 261</td>
<td>4</td>
</tr>
</tbody>
</table>

| Total | 16 | 16 |

Third Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Hours</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 327</td>
<td>3 CPE 310</td>
<td>3</td>
</tr>
<tr>
<td>EE 335</td>
<td>3 CPE 311</td>
<td>1</td>
</tr>
<tr>
<td>EE 336</td>
<td>1 EE 329</td>
<td>3</td>
</tr>
<tr>
<td>EE 355</td>
<td>3 EE 328</td>
<td>1</td>
</tr>
<tr>
<td>EE 356</td>
<td>1 EE 345</td>
<td>3</td>
</tr>
<tr>
<td>STAT 215</td>
<td>3 Math/Science Elective</td>
<td>3</td>
</tr>
</tbody>
</table>
ENGL 102 (GEF 1) 3
CSEE 380 1

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Fall</th>
<th>Hours</th>
<th>Spring</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSEE 480</td>
<td>2 CSEE 481</td>
<td>3</td>
<td>CA Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>ECON 201 (GEF 4)</td>
<td>3 CA Technical Elective</td>
<td>3</td>
<td>CA Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>CA Technical Elective</td>
<td>3 Technical Elective</td>
<td>3</td>
<td>CA Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>Engineering Science Elective</td>
<td>3 Technical Elective</td>
<td>3</td>
<td>Total credit hours: 127</td>
<td></td>
</tr>
</tbody>
</table>

*Offered once per year in semester shown.

Program Educational Objectives

The Program Educational Objectives (PEO) of the Electrical Engineering (EE) program at West Virginia University is to produce graduates who will apply their knowledge and skills to achieve success in their careers in industry, research, government service or graduate study. It is expected that in the first five years after graduation our graduates will achieve success and proficiency in their profession, be recognized as leaders, and contribute to the well-being of society.

Student Outcomes

Upon graduation, all Bachelor of Science in Electrical Engineering students will have:

1. An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
2. An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
3. An ability to communicate effectively with a range of audiences.
4. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
5. An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
6. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
7. An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

EE 191. First-Year Seminar. 1-3 Hours.

Engages students in active learning strategies that enable effective transition to college life at WVU. Students will explore school, college and university programs, policies and services relevant to academic success. Provides active learning activities that enable effective transition to the academic environment. Students examine school, college and university programs, policies and services.

EE 221. Introduction to Electrical Engineering. 3 Hours.

PR: WVU and PSC sections require PHYS 111 and MATH 156, WVUIT sections require MATH 156. Electrical engineering units, circuit elements, circuit laws, measurement principles, mesh and node equations, network theorems, operational amplifier circuits, energy storage elements, sinusoids and phasors, sinusoidal steady state analysis, average and RMS values, complex power. Pre-requisite(s) and/or co-requisite(s) may differ on regional campuses.

EE 222. Introduction to Electrical Engineering Laboratory. 1 Hour.

CoReq: EE 221. Design and experimental exercises basic electrical circuits. Use of the digital computer to solve circuit problems. (3 hr. lab.).

EE 223. Electrical Circuits. 3 Hours.

PR: WVU and PSC sections require EE 221 and EE 222 and PHYS 112 and MATH 251 all with a grade of C- or better, WVUIT sections require EE 221 and EE 222 and MATH 251 all with a grade of C- or better. Time response of RC and RL circuits, unit step response, second order circuits, poly-phase systems, mutual inductance, complex frequency, network frequency response, two-port networks and transformers. Fourier methods and Laplace Transforms.

EE 224. Electrical Circuits Laboratory. 1 Hour.

CoReq: EE 223. Design and experimental exercises in circuits. Transient circuits, steady state AC circuits, frequency response of networks. Use of digital computer to solve circuit problems. (3 hr. lab.).
EE 251. Digital Electronics. 3 Hours.
PR: EE 221 with a minimum grade of C-, PHYS 112 with a minimum grade of C- and CPE 271. Diode and bipolar and field-effect transistor device operation and switching models. Use of bipolar and field-effect transistors and diodes in switching and logic circuits. Switching circuits and logic gates including logic levels, circuit configuration, and interfacing. (3 hr. lec.).

EE 252. Digital Electronics Laboratory. 1 Hour.
CoReq: EE 251. Design, fabrication, and measurement of digital electronic circuits. Modeling and use of discrete devices, logic gates, display devices in switching circuits and timer circuits, Interfacing with integrated logic gates. (3 hr. lab.).

EE 293. Special Topics. 1-6 Hours.
PR: Consent. Investigation of topics not covered in regularly scheduled courses.

EE 327. Signals and Systems 1. 3 Hours.
PR: MATH 261 and EE 223. Introduction to linear system models and solutions in the time and frequency domains. Balanced emphasis is placed on both continuous and discrete time and frequency methods. (3 hr. lec.).

EE 328. Signals and Systems Laboratory. 1 Hour.
PR: EE 327 and CoReq: EE 329. Laboratory experiments in measurement and analysis of systems and signals. (3 hr. lab.).

EE 329. Signals and Systems 2. 3 Hours.
PR: EE 327 and (MATH 448 or PR or CONC: STAT 215). Analysis of continuous and discrete time signals. Statistical description of nondeterministic signals, correlation functions, and spectral density with these concepts applied to communications and signal processing. (3 hr. lec.).

EE 335. Electromechanical Energy Conversion and Systems. 3 Hours.
PR: WVU sections require EE 223 and EE 224 and PHYS 112, WVUIT sections require EE 223 and EE 224 and a co-requisite of EE 345. Electric energy sources, fundamentals of electromechanical energy conversion, transformers and rotating machinery.

EE 336. Electromechanical Energy Conversion and Systems Lab. 1 Hour.
PR or CONC: WVUIT sections require EE 335. 1 Hr. Transformers, DC motors and generator performance and characteristics, synchronous machine performance and characteristics.

EE 345. Engineering Electromagnetics. 3 Hours.
PR: WVU sections require MATH 261 and PHYS 112, WVUIT sections require MATH 261 and PHYS 112 and EE 223. Continued use of vector calculus, electrostatics, magnetostatics, Maxwell's Equations, and boundary conditions. Introduction to electromagnetic waves, transmission lines, and radiation from antennas.

EE 355. Analog Electronics. 3 Hours.
PR: EE 223 and EE 251. Electronic devices in analog circuits. Small-signal and graphical analysis of BJT and FET circuits; frequency response, feedback, and stability. Linear and nonlinear operational amplifier circuits. Power amplifiers and power control by electronic devices. (3 hr. lec.).

EE 356. Analog Electronics Laboratory. 1 Hour.
CoReq: EE 355. Design, fabrication, and measurement of analog electronic circuits. Use of discrete devices, integrated circuits, operational amplifiers, and power electronic devices. Study of biasing and stability, frequency response, filters, analog computation circuits, and power control circuits. (3 hr. lab.).

EE 411. Fundamentals of Control Systems. 3 Hours.
PR: EE 327. Introduction to classical and modern control; signal flow graphs; state-cariable characterization; time-domain, root locus, and frequency techniques; stability criteria. (3 hr. lec.).

EE 413. Introduction to Digital Control. 3 Hours.
PR: EE 327. Sampling of continuous-time signals and transform analysis. Stat-variable analysis for linear discrete-time systems and design of digital controller. (3 hr. lec.).

EE 425. Bioengineering. 3 Hours.
Introduction to human anatomy and physiology using an engineering systems approach. Gives the engineering student a basic understanding of the human system so that the student may include it as an integral part of the design. Co-listed with MAE 473. (3 hr. lec.).

EE 426. Biometric Systems. 3 Hours.
PR: STAT 215 and MATH 261 and CS 111. It is also suggested (not required) that EE 327 and CS 350 also be taken prior to enrolling in this course. This course presents an introduction to the principles of operation, design, testing, and implementation of biometric systems, and the legal, social and ethical concerns associated with their use.

EE 431. Electrical Power Distribution Systems. 3 Hours.
PR: EE 335 and EE 336 or consent. General considerations; load characteristics; subtransmission and distribution substations; primary and secondary distribution, secondary network systems; distribution transformers; voltage regulation and application of capacitors; voltage fluctuations; protective device coordination. (3 hr. lec.).

EE 435. Introduction to Power Electronics. 3 Hours.
PR: EE 335 and EE 355 and EE 356 or consent; WVUIT sections require EE 335 and EE 365 and EE 366 or consent. Application of power semiconductor components and devices to power system problems; power control; conditioning processing, and switching. Course supplemented by laboratory problems. (3 hr. lec.).
EE 436. Power Systems Analysis. 3 Hours.

EE 437. Fiber Optics Communications. 3 Hours.
PR: EE 329 and EE 345. Fundamentals of optics and light wave propagation, guided wave propagation and optical wave guides, light sources and light detectors, couplers, connections, and fiber networks, modulation noise and detection in communication systems. (3 hr. lec.).

EE 445. Introduction to Antennas. 3 Hours.
PR: EE 345 or equivalent. Development of Maxwell's equations and general electromagnetic theory underpinning broadcast communication systems, wave propagation, antennas and antenna arrays.

EE 450. Device Design and Integration. 3 Hours.
PR: EE 345 and EE 355. Fundamentals of semiconductor materials, p-n junctions, metal-semiconductor junctions, JFET's, MESFET's, MOSFET's, physical device design, device simulation, gate level & CMOS design and layout. (3 hr. lec.).

EE 455. Introduction to Microfabrication. 3 Hours.
PR: EE 355 or consent. Introduction to the physical processes underlying current and emerging microfabrication technology and their selective use in the technology computer aided design (TCAD) and fabrication of electrical, optical, and micromechanical devices and systems.

EE 457. Fundamentals of Photonics. 3 Hours.
PR: EE 345 or equivalent. Basic physics and optical engineering concepts necessary to understand the design and operation of photonic -based systems, including communications, nanophotonics, sensing and display technologies. Scaling, integration, and packaging of optical approaches and their compatibility with micro/nanosystems.

EE 461. Introduction to Communications Systems. 3 Hours.
PR: EE 329. Application of random processes and spectral analysis to the design and analysis of communication systems. Analysis and comparison of standard modulation techniques relative to bandwidth, noise, threshold, and hardware constraints.

EE 463. Digital Signal Processing Fundamentals. 3 Hours.
PR: MATH 251 and EE 327. Theories, techniques, and procedure used in analysis, design, and implementation of digital and sampled data filters. Algorithms and computer programming for software realization. Digital and sampled data realizations, switched capacitor and charge-coupled device IC's. (3 hr. lec.).

EE 465. Introduction to Digital Image Processing. 3 Hours.
PR: EE 251 and EE 327. Introduction to the vision process fundamental mathematical characterization of digitized images, two-dimensional transform methods used in image processing, histogram analysis and manipulation, image and filtering techniques, image segmentation, and morphology. (3 hr. lec.).

EE 467. Digital Speech Processing. 3 Hours.
PR: EE 327 and EE 329. Covers fundamentals in digital speech processing including production, speech analysis, speech coding, speech enhancement, speech recognition and speaker recognition. Emphasize hand-on experience of processing speech signals using MATLAB.

EE 480. Capstone Project - Design. 3 Hours.
PR: ENGL 102 or ENGL 103 and consent. Penultimate semester. Group senior design projects with individual design assignments appropriate to student's discipline. Complete system-level designs of the subsequent semester's project presented in written proposals and oral presentations. (Equivalent to BIOM 480, CPE 480, CS 480) (2 hr. lec., 1 hr. conf.) Note: WVU Tech course is 3 credit hours.

EE 481. Capstone Project - Implementation. 3 Hours.
PR: EE 480. Detailed design and implementation of the system including choice of components, algorithm development, interfacing, trouble shooting, working in groups, and project management. Also covers professional topics, including ethics, liability, safety, socio-legal issues, risks and employment agreements. (1 hr. lec., 1 hr. conf., 2 hr. lab.).

EE 490. Teaching Practicum. 1-3 Hours.
PR: Consent. Teaching practice as a tutor or assistant.

EE 491. Professional Field Experience. 1-18 Hours.
PR: Consent. (May be repeated up to a maximum of 18 hours.) Prearranged experiential learning program, to be planned, supervised, and evaluated for credit by faculty and field supervisors. Involves temporary placement with public or private enterprise for professional competence development.

EE 492. . 1-6 Hours.
Directed study, reading, and/or research.

EE 493. Special Topics. 1-6 Hours.
PR: Consent. Investigation of topics not covered in regularly scheduled courses.

EE 494. Seminar. 1-3 Hours.
PR: Consent. Presentation and discussion of topics of mutual concern to students and faculty.

EE 495. Independent Study. 1-6 Hours.
Faculty supervised study of topics not available through regular course offerings.
EE 496. Senior Thesis. 1-3 Hours.
PR: Consent.

EE 497. Research. 1-6 Hours.
Independent research projects.

EE 498. Honors. 1-3 Hours.
PR: Students in Honors Program and consent by the honors director. Independent reading, study or research.