Department of Petroleum & Natural Gas Engineering, B.S.P.N.G.E.

E-mail: Statler-PNGE@mail.wvu.edu (samuel.ameri@mail.wvu.edu)

Degree Offered

• Bachelor of Science in Petroleum and Natural Gas Engineering (B.S.P.N.G.E.)

Nature of the Program

Petroleum and Natural Gas Engineering is concerned with design and application aspects of the discovery, production, and transportation of oil and natural gas resources.

Professionals in this field must have a thorough understanding of the geological principles relating to the occurrence, discovery, and production of fluid hydrocarbons. The petroleum and natural gas engineer must know and be capable of applying both conventional engineering design principles as well as those pertaining specifically to the field of petroleum and natural gas engineering. These are developed in the petroleum and natural gas engineering courses in the curriculum. In addition, a strong foundation in mathematics and the sciences broadens the future engineer’s professional capabilities. Because many engineers will be employed as supervisors or executives, managerial and social skills are also emphasized.

Students are offered the opportunity to enter all phases of the petroleum and natural gas industry in meaningful and important jobs, continue their education towards advanced degrees, or in some cases pursue a combination of professional employment and continued education. The Bachelor of Science in Petroleum and Natural Gas Engineering program is accredited by the Engineering Accreditation Commission of ABET, https://www.abet.org.

Program Educational Objectives

• The graduates will be successful in their professional careers as petroleum engineers in the energy industry, government agencies, and/or post-graduate education.
• The graduates will continue to develop professionally and serve in leadership roles.
• The graduates will be successful in demonstrating their obligations to the profession, to their employer, and to society.

The foundation for achieving program objectives is established through a rigorous curriculum that provides the students with:

• An understanding of scientific and engineering principles and the application of these principles in solving petroleum and natural gas engineering problems using modern tools
• An integrated design experience leading to a capstone design course
• A balanced and rounded education to recognize the need for developing technical communication and teamwork skills, as well as understanding the engineer’s professional, ethical, and societal obligations

Student Outcomes

Upon graduation, all Bachelors of Science in Petroleum and Natural Gas Engineering students will have:

1. An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
2. An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
3. An ability to communicate effectively with a range of audiences
4. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
5. An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
6. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
7. An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

These outcomes are achieved by enrolling in rigorous individual courses in all basic areas of petroleum and natural gas engineering, basic science, mathematics, geology, and humanities and social sciences. The petroleum and natural gas engineering curriculum also contains significant laboratory components aimed at reinforcing the knowledge gained in the classroom. In the senior year, technical electives are offered in which the student may obtain additional depth of knowledge in specific areas of petroleum and natural gas engineering technology. Each student is individually mentored by a member of the petroleum and natural gas engineering faculty.
Students gain practical experience and first-hand knowledge of many aspects of petroleum and natural gas engineering through close proximity to the industry in West Virginia and surrounding states. Production sites, secondary and enhanced oil recovery projects, compressor stations, gas storage fields, and corporate offices all provide excellent opportunities for our students. Additional experience is provided through modern, well-equipped laboratories within the department and the University. Students are urged to gain field experience through summer employment in the industry.

FACULTY

CHAIR

- Samuel Ameri - M.S.Pet.E., P.E. (West Virginia University)
 Formation Evaluation

PROFESSORS

- Kashy Aminian - Ph.D. (University of Michigan)
 Graduate Coordinator. Natural Gas Engineering, Unconventional Reservoirs
- Shahab Mohaghegh - Ph.D. (Pennsylvania State University)
 Intelligent Systems, Shale Analytics

ASSOCIATE PROFESSOR

- H. Ilkin Bilgesu - Ph.D., P.E. (Pennsylvania State University)
 Drilling and Production Engineering
- Ebrahim Fathi - Ph.D. (University of Oklahoma)
 Phase Behavior
- Mehrdad Zamirian - Ph.D. (West Virginia University)
 Property Evaluation

ASSISTANT PROFESSOR

- Mohamed El Sgher - Ph.D. (West Virginia University)
 Production, Unconventional
- Ming Gu - Ph.D. (University of Texas)
 Rock Mechanics

ADJUNCT PROFESSORS

- Alan Brannon - Ph.D. (West Virginia University)
 Petroleum Engineering Fundamentals
- Josh Dalton - MSPNGE (West Virginia University)
 Drilling and Completion
- Pramod Thakur - Ph.D. (Pennsylvania State University)
 Coalbed Methane

Click here to view the Suggested Plan of Study (p. 5)

Curriculum in Petroleum and Natural Gas Engineering

General Education Foundations

Please use this link to view a list of courses that meet each GEF requirement. (http://registrar.wvu.edu/gef/)

NOTE: Some major requirements will fulfill specific GEF requirements. Please see the curriculum requirements listed below for details on which GEFs you will need to select.

General Education Foundations

<table>
<thead>
<tr>
<th>F1 - Composition & Rhetoric</th>
<th>3-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 101 & ENGL 102 or ENGL 103</td>
<td>Introduction to Composition and Rhetoric and Composition, Rhetoric, and Research Accelerated Academic Writing</td>
</tr>
<tr>
<td>F2A/F2B - Science & Technology</td>
<td>4-6</td>
</tr>
<tr>
<td>F3 - Math & Quantitative Reasoning</td>
<td>3-4</td>
</tr>
<tr>
<td>F4 - Society & Connections</td>
<td>3</td>
</tr>
<tr>
<td>F5 - Human Inquiry & the Past</td>
<td>3</td>
</tr>
</tbody>
</table>
Please note that not all of the GEF courses are offered at all campuses. Students should consult with their advisor or academic department regarding the GEF course offerings available at their campus.

Degree Requirements

Students must meet the following criteria to qualify for a Bachelor of Science in Petroleum and Natural Gas Engineering degree:

- Complete a minimum of 128 credit hours
- Satisfy WVU's undergraduate degree requirements
- Satisfy Statler College's undergraduate degree requirements
- Complete all courses listed in the curriculum requirements with the required minimum grades
- Attain an overall grade point average of 2.25 or better
- Attain a WVU grade point average of 2.25 or better
- Attain a Statler grade point average of 2.25 or better
- A maximum of one math or science courses with a grade of D+, D, or D- may apply towards a Statler College degree
- Complete a survey regarding their academic and professional experiences at WVU, as well as post-graduation job placement or continuing education plans.

The Statler GPA is computed based on all work taken at WVU with a subject code within Statler College (BIOM, BMEG, CE, CHE, CPE, CS, CSEE, CYBE, EE, ENGR, IENG, IH&S, MAE, MINE, PDA, PNGE, SAFM, SENG) excluding ENGR 140, ENGR 150, and CS 101. The WVU GPA is computed based on all work taken at WVU. The Overall GPA is computed based on all work taken at WVU and transfer work.

Curriculum Requirements

University Requirements

- General Education Foundations (GEF) 1, 2, 3, 4, 5, 6, 7, and 8 (31-37 Credits)
- Outstanding GEF Requirements 1, 5, 6, and 7
- ENGR 191 First-Year Seminar

Math and Science Requirements

- CHEM 115 & 115L Fundamentals of Chemistry 1 and Fundamentals of Chemistry 1 Laboratory (GEF 2B)
Petroleum & Natural Gas Engineering Program Requirements

A minimum grade of C- is required in all PNGE courses.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 201</td>
<td>Principles of Microeconomics (GEF 4)</td>
<td>3</td>
</tr>
<tr>
<td>ECON 202</td>
<td>Principles of Macroeconomics</td>
<td>3</td>
</tr>
<tr>
<td>EE 221</td>
<td>Introduction to Electrical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>MAE 241</td>
<td>Statics</td>
<td>3</td>
</tr>
<tr>
<td>MAE 243</td>
<td>Mechanics of Materials</td>
<td>3</td>
</tr>
<tr>
<td>MAE 320</td>
<td>Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>MAE 331</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PNGE 200</td>
<td>Introduction to Petroleum Engineering</td>
<td>3</td>
</tr>
<tr>
<td>PNGE 310</td>
<td>Drilling Engineering</td>
<td>3</td>
</tr>
<tr>
<td>PNGE 312</td>
<td>Drilling Fluids Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>PNGE 332</td>
<td>Petroleum Properties and Phase Behavior (Fulfills Writing and</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Communications Skills Requirement)</td>
<td></td>
</tr>
<tr>
<td>PNGE 333</td>
<td>Basic Reservoir Engineering</td>
<td>3</td>
</tr>
<tr>
<td>PNGE 400</td>
<td>Petroleum Engineering Ethics</td>
<td>1</td>
</tr>
<tr>
<td>PNGE 420</td>
<td>Production Engineering</td>
<td>3</td>
</tr>
<tr>
<td>PNGE 432</td>
<td>Petroleum Reservoir Engineering Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>PNGE 441</td>
<td>Oil and Gas Property Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>PNGE 447</td>
<td>Introduction to Carbon Capture and Storage</td>
<td>3</td>
</tr>
<tr>
<td>PNGE 450</td>
<td>Formation Evaluation</td>
<td>3</td>
</tr>
<tr>
<td>PNGE 460</td>
<td>Well Stimulation Design</td>
<td>3</td>
</tr>
<tr>
<td>PNGE 470</td>
<td>Natural Gas Engineering</td>
<td>4</td>
</tr>
<tr>
<td>PNGE 472</td>
<td>Shale Analytics</td>
<td>3</td>
</tr>
<tr>
<td>PNGE 480</td>
<td>Petroleum Engineering Design</td>
<td>3</td>
</tr>
<tr>
<td>PNGE 415</td>
<td>Well Control</td>
<td></td>
</tr>
<tr>
<td>PNGE 434</td>
<td>Applied Reservoir Engineering</td>
<td></td>
</tr>
<tr>
<td>PNGE 439</td>
<td>Introduction to Reservoir Simulation</td>
<td></td>
</tr>
<tr>
<td>PNGE 463</td>
<td>Horizontal Drilling</td>
<td></td>
</tr>
<tr>
<td>PNGE 471</td>
<td>Natural Gas Production and Storage</td>
<td></td>
</tr>
<tr>
<td>PNGE 493</td>
<td>Special Topics</td>
<td></td>
</tr>
<tr>
<td>AGEE 220</td>
<td>Group Organization and Leadership</td>
<td></td>
</tr>
<tr>
<td>ARE 187</td>
<td>Energy Resource Economics</td>
<td></td>
</tr>
<tr>
<td>ARE 220</td>
<td>Introductory Environmental and Resource Economics</td>
<td></td>
</tr>
</tbody>
</table>

Total Hours: 37
Suggested Plan of Study

It is important for students to take courses in the order specified as much as possible; all prerequisites and concurrent requirements must be observed.

A typical B.S.P.N.G.E. degree program that completes degree requirements in four years is as follows.

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Hours</th>
<th>Spring</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 155 (GEF 3)</td>
<td>4</td>
<td>4 MATH 156 (GEF 8)</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 101</td>
<td>2</td>
<td>2 ENGR 102</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 191</td>
<td>1</td>
<td>1 PHYS 111</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 115</td>
<td></td>
<td>4 GEOL 101</td>
<td>3</td>
</tr>
<tr>
<td>& 115L (GEF 2B)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 101 (GEF 1)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEF 5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Hours: 17

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Hours</th>
<th>Spring</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 112 & 112L</td>
<td>4</td>
<td>4 MATH 261</td>
<td>4</td>
</tr>
<tr>
<td>MATH 251</td>
<td></td>
<td>4 MAE 243</td>
<td>3</td>
</tr>
<tr>
<td>MAE 241</td>
<td></td>
<td>3 MAE 331</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 102 (GEF 1)</td>
<td>3</td>
<td>3 IENG 213 or STAT 215</td>
<td>3</td>
</tr>
<tr>
<td>ECON 201</td>
<td></td>
<td>3 PNGE 200</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours: 16

Third Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Hours</th>
<th>Spring</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNGE 332</td>
<td>3</td>
<td>3 PNGE 310</td>
<td>3</td>
</tr>
<tr>
<td>EE 221</td>
<td></td>
<td>3 PNGE 312</td>
<td>1</td>
</tr>
<tr>
<td>MAE 320</td>
<td></td>
<td>3 PNGE 333</td>
<td>3</td>
</tr>
<tr>
<td>ECON 202</td>
<td></td>
<td>3 PNGE 432</td>
<td>1</td>
</tr>
<tr>
<td>GEF 7</td>
<td></td>
<td>3 GEOL 373</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cultural/Sustainability Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Hours: 15

Fourth Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Hours</th>
<th>Spring</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNGE 420</td>
<td>3</td>
<td>3 PNGE 400</td>
<td>1</td>
</tr>
<tr>
<td>PNGE 441</td>
<td></td>
<td>3 PNGE 447</td>
<td>3</td>
</tr>
<tr>
<td>PNGE 450</td>
<td></td>
<td>3 PNGE 460</td>
<td>3</td>
</tr>
<tr>
<td>PNGE 470</td>
<td></td>
<td>4 PNGE 472</td>
<td>3</td>
</tr>
<tr>
<td>Professional Elective</td>
<td>3</td>
<td>3 PNGE 480</td>
<td></td>
</tr>
</tbody>
</table>

Total Hours: 14

Department of Petroleum & Natural Gas Engineering, B.S.P.N.G.E.
Student Outcomes

Upon graduation, all Bachelors of Science of Science in Petroleum and Natural Gas Engineering students will have:

1. An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
2. An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
3. An ability to communicate effectively with a range of audiences
4. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
5. An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
6. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
7. An ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

PNGE 191. First-Year Seminar. 1-3 Hours.
Engages students in active learning strategies that enable effective transition to college life at WVU. Students will explore school, college and university programs, policies and services relevant to academic success. Provides active learning activities that enable effective transition to the academic environment. Students examine school, college and university programs, policies and services.

PNGE 200. Introduction to Petroleum Engineering. 3 Hours.
PR: Sophomore standing. Introduction; origin, migration, and accumulation of petroleum; reservoir fluids properties; properties of reservoir rocks; exploration; drilling technology; reservoir engineering; well completions; production engineering. Open to all students.

PNGE 293. Special Topics. 1-6 Hours.
PR: Consent. Investigation of topics not covered in regularly scheduled courses.

PNGE 297. Research. 1-6 Hours.
Independent Research projects.

PNGE 300. Transport Phenomena in Petroleum Engineering. 3 Hours.
PR: MAE 241. Introduction to fluid flow in pipes, two-phase flow, rotary drilling hydraulics, primary cementing jobs, flow calculations, flow measuring devices, fluid machinery, dimensional analysis, and heat transfer.

PNGE 310. Drilling Engineering. 3 Hours.
PR: GEOL 101 and MAE 331 with a minimum grade of C- in each. Rock properties, functions and design considerations of rotating system, hoisting system, and circulation system; drilling fluids calculations and selections; hydraulic programs; drilling optimization; casting string design; cementing programs; and pressure control.

PNGE 312. Drilling Fluids Laboratory. 1 Hour.
PR or Conc: PNGE 310. Topics include clay hydration, viscosity of water-based fluids, mud weight control, filtration studies, thinning agents, chemical contaminants, lime muds, polymer muds, rheological models, and liquid and solid determination.

PNGE 332. Petroleum Properties and Phase Behavior. 3 Hours.
PR: PNGE 200 and PHYS 111 and (ENGL 102 or ENGL 103). Theoretical and applied phase behavior of hydrocarbon system and hydrocarbon fluids. Applications to petroleum reservoirs and production engineering design. (2 hr. lec., 3 hr. lab.).

PNGE 333. Basic Reservoir Engineering. 3 Hours.

PNGE 400. Petroleum Engineering Ethics. 1 Hour.
PR: PNGE 450 or consent. Introduction to petroleum and natural engineering ethics and moral issues concerning safety in engineering practice as well as those arising for engineers employed by corporations. Professionalism and professional registration.

PNGE 405. Multidisciplinary Team Project. 1 Hour.
PR: PNGE 434 and PNGE 470. Introduction to the need to seek input from other professionals, incorporate constraints imposed by other disciplines in solving petroleum and natural gas engineering design problems, and working with other professionals in a multi-disciplinary team.

PNGE 415. Well Control. 3 Hours.
PR: PNGE 310. Methods, techniques, equipment, and engineering calculations used in the control of oil and natural gas wells during drilling operations. Practical applications with rig floor simulator.
PNGE 420. Production Engineering. 3 Hours.
PR: PNGE 310 and PNGE 332. Well completion, performance of Productive formulation, drill stem tests, completion of wells, flowing wells, gas lift methods and equipment, pumping installation design, well stimulation, emulsions, treating, gathering, and storage of oil and gas, field automation. (3 hr. lec.).

PNGE 432. Petroleum Reservoir Engineering Laboratory. 1 Hour.
PR or Conc: PNGE 333. Laboratory evaluation of basic and special petroleum reservoir rock properties. (3 Hr. lab.).

PNGE 434. Applied Reservoir Engineering. 3 Hours.
PR: MATH 261 and PNGE 333 and PR or Conc: STAT 215 or IENG 213. Application of reservoir engineering data to calculation of recovery potentials and prediction of reservoir performance under a variety of production methods to effect maximum conservation.

PNGE 439. Introduction to Reservoir Simulation. 3 Hours.
PR: PNGE 333. The principal objective of this course is the development of reservoir simulation theory to the level required for the construction of a three-phase, three-dimensional reservoir simulator. In addition to providing practice in developing a simulator, the course will also cover recent advances in simulation and history matching.

PNGE 441. Oil and Gas Property Evaluation. 3 Hours.
PR: PNGE 333 and (STAT 215 or IENG 213). Reserve estimation decline analysis, petroleum property evaluation, including interest calculations, cost estimation and tax evaluation. Overview investment decision analysis and computer applications in property evaluation.

PNGE 447. Introduction to Carbon Capture and Storage. 3 Hours.
PR: ENGL 102 and ENGR 101 and PNGE 200 with a minimum grade of C- in all. This course studies environmental, and economical impact of carbon capture and storage technologies, introduces different carbon capturing and storage technologies and shows how this technology can provide a long-term solution for excess carbon dioxide. This course evaluates different carbon storage sites and teaches the concept of CO2 sequestration modeling. The course presents some insights on the future of CCS technologies.

PNGE 450. Formation Evaluation. 3 Hours.
PR: PNGE 310 and PR or Conc: EE 221 or consent. Various well logging methods and related calculations with exercises in interpretation of data from actual well logs.

PNGE 460. Well Stimulation Design. 3 Hours.
PR: (MAE 243 and PNGE 420 and PNGE 333) or consent. Fundamentals of well stimulation and treatment design and their applications to low permeability formations.

PNGE 463. Horizontal Drilling. 3 Hours.
PR: MATH 261 and MAE 243 with a minimum grade of C- and PNGE 310 with a minimum grade of C. Fundamental concepts of horizontal drilling technology are introduced, which include (1) application of directional drilling, (2) design of directional well trajectory, (3) determination of well trajectory from survey data, (4) methods and tools of controlling wellpath while drilling, (5) calculation of torque and drag force in drillstring design, (6) application of geomechanics in directional drilling, and (7) borehole stability analysis.

PNGE 470. Natural Gas Engineering. 4 Hours.
PR: PNGE 333 and PR or Conc: MAE 320. Natural gas properties, compression, transmission, processing, and application of reservoir engineering principles to predict the performance and design of gas, gas-condensate, and storage reservoirs. Includes a laboratory devoted to gas measurements. (3 hr. lec, 3 hr. lab.).

PNGE 471. Natural Gas Production and Storage. 3 Hours.
PR: PNGE 470. Development of gas and gas-condensate reservoirs; design and development of gas storage fields in depleted gas, gas-condensate, oil reservoirs and aquifers.

PNGE 472. Shale Analytics. 3 Hours.
PR: PNGE 333 and PNGE 420. Combining domain expertise (reservoir and production engineering) with Artificial Intelligence and Machine Learning, this course introduces a new and realistic technology that avoids assumptions and interpretations in order to model the impact of completion, stimulation, and operational conditions on oil and gas production from the shale wells.

PNGE 480. Petroleum Engineering Design. 3 Hours.
PR: PNGE 420 and PNGE 434 and PNGE 441 and PR or Conc: PNGE 450. Comprehensive problems in design involving systems in oil and gas production, field processing, transportation, and storage.

PNGE 490. Teaching Practicum. 1-3 Hours.
PR: Consent. Teaching practice as a tutor or assistant.

PNGE 491. Professional Field Experience. 1-18 Hours.
PR: Consent. (May be repeated up to a maximum of 18 Hours.) Prearranged experiential learning program, to be planned, supervised, and evaluated for credit by faculty and field supervisors. Involves temporary placement with public or private enterprise for professional competence development.

PNGE 493. Special Topics. 1-6 Hours.
PR: Consent. Investigation of topics not covered in regularly scheduled courses.

PNGE 494. Seminar. 1-3 Hours.
PR: Consent. Presentation and discussion of topics of mutual concern to students and faculty.
PNGE 495. Independent Study. 1-6 Hours.
Faculty supervised study of topics not available through regular course offerings.

PNGE 496. Senior Thesis. 1-3 Hours.
PR: Consent.

PNGE 497. Research. 1-6 Hours.
Independent research projects.

PNGE 498. Honors. 1-3 Hours.
PR: Students in Honors Program and consent by the honors director. Independent reading, study or research.