Department of Mechanical & Aerospace Engineering

E-mail: Statler-MAE@mail.wvu.edu (jacky.prucz%20@mail.wvu.edu)

Degrees Offered

• Bachelor of Science in Aerospace Engineering (B.S.A.E.)
• Bachelor of Science in Mechanical Engineering (B.S.M.E.)
• Dual Degree in Aerospace and Mechanical Engineering

Nature of the Program

The MAE Department offers undergraduate degrees in aerospace engineering and mechanical engineering. Our degree programs provide a strong theoretical background as well as practical experience gained through projects and hands-on research. Our undergraduate programs provide students with the skills required for a broad range of jobs in industry, government, academia, business, and research. We begin with a strong foundation in mathematics and add a wide spectrum of courses on the fundamentals of engineering mechanics, thermodynamics, fluid mechanics, and engineering design. Each of the degree programs provides a broad spectrum of knowledge in the field and allows for specialization through electives, independent research projects, and learning abroad opportunities. Both undergraduate degrees include several options for capstone design experience in the final year of study. The program also provides a broad general education necessary to put technical knowledge into perspective.

FACULTY

CHAIR

• Jacky C. Prucz - Ph.D. (Georgia Institute of Technology)
 Structural Design, Composite Materials, Solid Mechanics

PROFESSORS

• Ever J. Barbero - Ph.D. (Virginia Polytechnic Institute & State University)
 Materials, Experimental and Computational Mechanics
• Wade W. Huebsch - Ph.D. (Iowa State University)
 Fluid Mechanics, CFD, Numerical Methods
• Bruce S. Kang - Ph.D. (University of Washington)
 Experimental Mechanics, Advanced Materials
• Hailin Li - Ph.D. (University of Calgary, Canada)
 Combustion, Emissions, Fuel Efficiency of Vehicles and IC Engines
• Xingbo Liu - Ph.D. (University of Science and Technology of China, Beijing)
 Materials Science
• Victor H. Mucino - Dr.Eng., P.E. (University of Wisconsin-Milwaukee)
 Mechanical Engineering Design, CAD, Finite Element Analysis
• Marcello R. Napolitano - Ph.D. (Oklahoma State University)
 Aircraft Stability and Control, Feedback Control, Unmanned Airborne Vehicles (UAVs)
• Mario Perhinschi - Ph. D. (University of Bucharest, Romania)
 Flight Modeling and Simulation
• Songgang Qiu - Ph. D. (University of Minnesota)
 Thermodynamics, Heat Transfer
• Edward M. Sabolsky - Ph.D. (The Pennsylvania State University)
 Materials, Ceramic Science
• Samir N. Shoukry - Ph.D. (Aston University, Birmingham, U.K.)
 Pavement Modeling, Non-destructive Evaluation, Structural Dynamics, Neural nets, Instrumentation
• Nithi T. Sivaneri - Ph.D. (Stanford University)
 Structural Mechanics, Composite Materials, FEM, Numerical Methods
• Xueyan Song - Ph.D. (Zhejiang University, China)
 Materials Science, Electron Microscopy
ASSOCIATE PROFESSORS

- V'yacheslav Akkerman - Ph.D. (Umeå University, Sweden)
 Turbulent Combustion, Flame Turbulization
- Omid Askari - Ph.D. (Northeastern University)
 Engines, Gas Turbines, Alternate Fuels
- Cosmin E. Dumitrescu - Ph.D. (University of Alabama)
 Combustion, Alternate Fuels, IC Engines
- Jason N. Gross - Ph.D. (West Virginia University)
 Unmanned Aerial Vehicles, Avionic Systems, Flight Testing
- Yu Gu - Ph.D. (West Virginia University)
 Robotic Systems, Sensor Fusion
- Derek Johnson - Ph.D. P. E. (West Virginia University)
 Alternative Fuels, Engines and Emissions
- David S. Mebane - Ph.D. (Georgia Institute of Technology)
 Fuel Cells, Multi Scale Simulation of Chemical and Electrochemical Systems
- Osama Mukdadi - Ph.D. (University of Colorado)
 Bioengineering, Acoustics, Solid Mechanics and Materials
- Terence D. Musho - Ph.D. P. E. (Vanderbilt University)
 Nanoscale Thermal and Electrical Transport, Direct Energy Conversion
- Andrew C. Nix - Ph.D. (Virginia Polytechnic Institute and State University)
 Turbines, Engines and Emissions
- Guilherme Augusto Silva Pereira - Ph.D. (Federal University of Minas Gerais)
 Field Robotics, Autonomous Vehicles
- Loren Rieth - Ph.D. (University of Florida)
 Microelectrode Implants, Electrical & Neural Prosthesis
- Konstantinos Sierras - Ph.D. (University of Birmingham, U.K.)
 Flexible Optoelectronic Devices, Tribology, Materials for Renewable Energy
- Gregory J. Thompson - Ph.D. (West Virginia University)
 Thermodynamics, Machine Design
- W. Scott Wayne - Ph.D. (West Virginia University)
 Machine Design, Alternative Fuels

ASSISTANT PROFESSORS

- Piyush M. Mehta - Ph.D. (University of Kansas)
 Astrodynamics, Space Situational Awareness
- Nicholas Szczecinski - Ph.D. (Case Western)
 Robotics
- Arvind Thiruvengadam - Ph.D. (West Virginia University)
 Emissions of Heavy-Duty Internal Combustion Engines
- Xi Yu - Ph.D. (Boston University)
 Robotics

TEACHING ASSISTANT PROFESSORS

- Patrick H. Browning - Ph.D. (West Virginia University)
 Aerodynamics, Aircraft Design
- Christopher Griffin - Ph.D. (West Virginia University)
 Aerodynamics, Fluid Mechanics
- Andrew P. Rhodes - Ph.D. (West Virginia University)
 Aerospace Dynamics and Propulsion

RESEARCH ASSOCIATE PROFESSOR

- Yun Chen - Ph.D. (Universidade Tecnica de Lisboa)
 Material Science, Metal Hydrides, Cathode Material Development
- David C. Lewellen - Ph.D. (Cornell University)
 Fluid Dynamics, Turbulence
• Eduardo Sosa - Ph. D. (University of Puerto Rico)
 Thin Wall Structures

RESEARCH ASSISTANT PROFESSORS
• Ali Baheri - Ph.D. (University of North Carolina at Charlotte)
 Machine Learning, Autonomous Driving
• Wenjuan Li - Ph.D. (West Virginia University)
 Fuel Cells

VISITING PROFESSORS AND ADJUNCT PROFESSORS
• Alberto Ayala - Ph.D. (University of California, Davis)
 Engine Emissions
• David Booker - Ph. D. (University of Exeter)
 Exhaust Flow
• Darran R. Cairns - Ph.D. (University of Birmingham, U.K.)
 Materials Science
• John A. Christian - Ph.D. (University of Texas)
 Spacecraft Design, Navigation, Estimation Theory
• Weigiang Ding - Ph.D. (Northwestern University)
 Nanostructures
• Donald H. Ferguson - Ph.D. (West Virginia University)
 Thermal Sciences
• Mridul Gautam - Ph.D. (West Virginia University)
 Alternate Fuels, Engine and Emissions, VP for Research UNR
• Luis A. Godoy - Ph.D. (University of London, U.K.)
 Structural Stability
• Frank E. Goodwin - Sc.D. (Massachusetts Institute of Technology)
 Materials Engineering, ILZRO
• Valeriya Gritsenko - Ph.D. (University of Alberta, Canada)
 Neuroscience
• Yiqun Huang - Ph.D. (University of Texas, Austin)
 Engine and Emissions Control
• Stephen Kukureka - Ph.D. (University of Birmingham, U.K.)
 Materials Science
• Andrew D. Lowery - Ph.D. (West Virginia University)
 Control Systems
• Alejandro Lozano-Guzman - Ph.D. (University of New Castle Upon Tyne, U.K.)
 Structural Analysis, Power and Control Systems (CICATA-IPN)
• Eugene A. McKenzie - Ph.D. (West Virginia University)
 Mechanical Engineering Design, NIOSH
• Chris Menchini - Ph.D. (West Virginia University)
 Computational Fluid Dynamics, Fire Modeling
• Vincenzo Mulone - Ph.D. (University of Rome Tor Vergata)
 Internal Combustion Engines, Emissions
• John Nuzkowski - Ph.D. (West Virginia University)
 Alternative Fuels and Engine Emissions, UNF
• Dale Olson - MBA (Western Governors University)
 Strategic Leadership
• Ming Pei - M.D., Ph.D. (Beijing Medical University, China)
 Tissue Engineering HSC-WVU
• Matthew Robinson - Ph. D. (West Virginia University)
 Analysis and Optimization of Engines
• Brad Seanor - Ph.D. (West Virginia University)
 Controls Systems
• Benjamin Shade - Ph.D. (West Virginia University)
 Engine Emissions, IAV Automotive
• Matthew S. Smith - M.D. (West Virginia University)
To be eligible to receive a bachelor’s degree, a student is required to complete satisfactorily the number of semester hours of work as specified in the program curriculum. Students must achieve a minimum grade point average of 2.25 for all courses taken at WVU, a major grade point average of 2.25 or better in courses completed within the student’s major, and a minimum overall grade point average of 2.25.

Dual Degree in Aerospace Engineering and Mechanical Engineering

In the modern technical marketplace, college graduates must attain every competitive edge possible to enhance their career opportunities. One way to do this is with a master’s degree following the bachelor’s degree; however, this often results in more specialization than may be desired and may take an additional two years. Another option is to broaden the undergraduate experience, thus opening more opportunities for the graduate. The dual B.S.A.E./B.S.M.E. program awards both the aerospace engineering and mechanical engineering degrees at the completion of a planned curriculum.

Students under this option pursue the B.S.A.E. and B.S.M.E. degrees simultaneously. This can be accomplished by declaring intentions as a freshman requesting admission to the programs or by informing an MAE advisor of the dual-degree preference. Maximum scheduling flexibility will result when this decision is made as early as possible in the student’s academic career. Dual-degree students must take all courses listed in the 158-hour dual curriculum under the Major tab and satisfy the other requirements of the two individual programs.

Curriculum for the Dual Degree in Aerospace Engineering and Mechanical Engineering

A requirement for graduation in aerospace and mechanical engineering is a departmental grade point average of 2.25 or better for all required mechanical and aerospace engineering (MAE) courses. Also a grade of C- or better is required in each of the four required mathematics courses and physics 111.

It is important for students to take courses in the order specified as close as possible; all prerequisites and concurrent requirements must be observed. A typical B.S.A.E./B.S.M.E. degree program that completes degree requirements in four and a half years is listed below.

Students must complete a minimum of 158 credit hours to graduate - the total at the bottom reflects all possible course combinations

<table>
<thead>
<tr>
<th>Mechanical and Aerospace Engineering Core Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 115 Fundamentals of Chemistry</td>
</tr>
<tr>
<td>CHEM 115L and Fundamentals of Chemistry 1 - Laboratory</td>
</tr>
<tr>
<td>ECON 201 Principles of Microeconomics</td>
</tr>
<tr>
<td>ECON 202 Principles of Macroeconomics</td>
</tr>
<tr>
<td>ENGR 101 Engineering Problem Solving 1</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>ENGR 102</td>
<td>Engineering Problem-Solving 2</td>
<td>3</td>
</tr>
<tr>
<td>or MAE 102</td>
<td>Introduction to Mechanical and Aerospace Engineering Design</td>
<td>3</td>
</tr>
<tr>
<td>or CHE 102</td>
<td>Introduction to Chemical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 191</td>
<td>First-Year Seminar</td>
<td>1</td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 155</td>
<td>Calculus 1</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 153 & MATH 154</td>
<td>Calculus 1a with Precalculus and Calculus 1b with Precalculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 156</td>
<td>Calculus 2</td>
<td>4</td>
</tr>
<tr>
<td>MATH 251</td>
<td>Multivariable Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MATH 261</td>
<td>Elementary Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 111</td>
<td>General Physics</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 112</td>
<td>General Physics</td>
<td>4</td>
</tr>
</tbody>
</table>

A minimum cumulative GPA of 2.25 is required in all MAE courses.

Dual Core

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE 215</td>
<td>Intro to Aerospace Engineering</td>
<td>3</td>
</tr>
<tr>
<td>MAE 241</td>
<td>Statics</td>
<td>3</td>
</tr>
<tr>
<td>MAE 211</td>
<td>Mechatronics</td>
<td>3</td>
</tr>
<tr>
<td>MAE 242</td>
<td>Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>MAE 243</td>
<td>Mechanics of Materials</td>
<td>3</td>
</tr>
<tr>
<td>MAE 331</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>EE 221</td>
<td>Introduction to Electrical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EE 222</td>
<td>Introduction to Electrical Engineering Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>MAE 316</td>
<td>Analysis-Engineering Systems</td>
<td>3</td>
</tr>
<tr>
<td>MAE 320</td>
<td>Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>MAE 335</td>
<td>Incompressible Aerodynamics</td>
<td>3</td>
</tr>
<tr>
<td>MAE 343</td>
<td>Intermediate Mechanics of Materials</td>
<td>3</td>
</tr>
<tr>
<td>MAE 244</td>
<td>Dynamics and Strength Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>MAE 322</td>
<td>Thermal and Fluids Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>MAE 336</td>
<td>Compressible Aerodynamics</td>
<td>3</td>
</tr>
<tr>
<td>MAE 342</td>
<td>Dynamics of Machines</td>
<td>3</td>
</tr>
<tr>
<td>MAE 345</td>
<td>Aerospace Structures</td>
<td>3</td>
</tr>
<tr>
<td>MAE 434</td>
<td>Experimental Aerodynamics</td>
<td>2</td>
</tr>
<tr>
<td>MAE 456</td>
<td>Computer-Aided Design and Finite Element Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MAE 476</td>
<td>Space Flight and Systems</td>
<td>3</td>
</tr>
<tr>
<td>IENG 302</td>
<td>Manufacturing Processes</td>
<td>2</td>
</tr>
<tr>
<td>IENG 303</td>
<td>Manufacturing Processes Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>MAE 411</td>
<td>Advanced Mechatronics</td>
<td>3</td>
</tr>
<tr>
<td>MAE 423</td>
<td>Heat Transfer</td>
<td>3</td>
</tr>
<tr>
<td>MAE 460</td>
<td>Automatic Controls</td>
<td>3</td>
</tr>
<tr>
<td>MAE 454</td>
<td>Machine Design and Manufacturing</td>
<td>3</td>
</tr>
<tr>
<td>MAE 471</td>
<td>Principles of Engineering Design</td>
<td>3</td>
</tr>
</tbody>
</table>

Aerospace Engineering Technical Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
</table>

Mechanical Engineering Technical Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
</table>

Aerospace Engineering or Mechanical Engineering Technical Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
</table>

GEF Courses (Students who take ENGL 103 must take another technical Elective Course or department approved course) **

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
</table>

Area of Emphasis in either Aeronautical Engineering or Astronautical Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
</table>

Total Hours

** Minimum Grade of C required
DUAL SUGGESTED PLAN OF STUDY

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Hours</th>
<th>Spring</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 115</td>
<td>4</td>
<td>MATH 156 (GEF 8)</td>
<td>4</td>
</tr>
<tr>
<td>& 115L (GEF 2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 101 (GEF1)</td>
<td>3</td>
<td>ENGR 101</td>
<td>2</td>
</tr>
<tr>
<td>ENGR 101</td>
<td>2</td>
<td>ENGR 102</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 191</td>
<td>1</td>
<td>GEF 6</td>
<td>3</td>
</tr>
<tr>
<td>MATH 155 (GEF 3)</td>
<td>4</td>
<td>GEF 7</td>
<td>3</td>
</tr>
<tr>
<td>GEF 5</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Hours</th>
<th>Spring</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE 215</td>
<td>3</td>
<td>MAE 211</td>
<td>3</td>
</tr>
<tr>
<td>MAE 241</td>
<td>3</td>
<td>MAE 242</td>
<td>3</td>
</tr>
<tr>
<td>MATH 251</td>
<td>3</td>
<td>MAE 243</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 112 (GEF 8)</td>
<td>4</td>
<td>PHYS 112 (GEF 8)</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 102 (GEF1)</td>
<td>3</td>
<td>MATH 261</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ECON 201 (GEF 4)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
<td>19</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Hours</th>
<th>Spring</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE 316</td>
<td>3</td>
<td>MAE 244</td>
<td>1</td>
</tr>
<tr>
<td>MAE 320</td>
<td>3</td>
<td>MAE 322</td>
<td>1</td>
</tr>
<tr>
<td>MAE 335*</td>
<td>3</td>
<td>MAE 336*</td>
<td>3</td>
</tr>
<tr>
<td>MAE 343</td>
<td>3</td>
<td>MAE 342</td>
<td>3</td>
</tr>
<tr>
<td>EE 221</td>
<td>3</td>
<td>EE 222</td>
<td>3</td>
</tr>
<tr>
<td>EE 222</td>
<td>3</td>
<td>ECON 202</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Hours</th>
<th>Spring</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE 434*</td>
<td>2</td>
<td>MAE 411</td>
<td>3</td>
</tr>
<tr>
<td>MAE 456</td>
<td>3</td>
<td>MAE 423</td>
<td>3</td>
</tr>
<tr>
<td>Technical Electives</td>
<td>6</td>
<td>Technical Electives</td>
<td>3</td>
</tr>
<tr>
<td>Area of emphasis Course 2</td>
<td>3</td>
<td>Area of emphasis Course 2</td>
<td>2</td>
</tr>
<tr>
<td>Area of Emphasis Course 3</td>
<td>3</td>
<td>Area of Emphasis Course 3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Area of Emphasis Course 4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

Fifth Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Hours</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE 454</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MAE 471</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Four Technical Electives</td>
<td>11</td>
<td>Four Technical Electives</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

Total credit hours: 158

Note: The dual degree requires twenty hours of technical electives. The twenty hours consists of: nine hours of approved aerospace engineering technical electives, nine hours of approved mechanical engineering technical electives, and the final two hours can be either aerospace engineering or mechanical engineering approved technical electives. Students should consult with their academic advisor to select courses that form a clear and consistent pattern according to the career objectives of the student.
For Aeronautical Area of Emphasis students must completed MAE 365, MAE 426, MAE 475, MAE 485.

For Astronautical Area of Emphasis students must complete MAE 466, MAE 484, MAE 486, MAE 487.

* Offered once per year in the semester shown.

MAE 102. Introduction to Mechanical and Aerospace Engineering Design. 3 Hours.
PR: ENGR 101 with a minimum grade of C and (MATH 154 or MATH 155 with a minimum grade of C) and PR or CONC: PHYS 111. Engineering problem solving techniques related to mechanical and aerospace engineering topics through teamwork, written and oral communications, and using the computer, for algorithm development and computer aided design. Discussion of engineering professional and ethical behavior.

MAE 191. First-Year Seminar. 1-3 Hours.
Engages students in active learning strategies that enable effective transition to college life at WVU. Students will explore school, college and university programs, policies and services relevant to academic success. Provides active learning activities that enable effective transition to the academic environment. Students examine school, college and university programs, policies and services.

MAE 211. Mechatronics. 3 Hours.
PR: ENGR 102 or CHE 102 or MAE 102. Selection of mechanical and electronic components and integration of these components into complex systems. Hands-on laboratory and design experiments with components and measurement equipment used in the design of mechatronic products. (2 hr. lec., 3 hr. lab.).

MAE 212. Introduction to Computer Aided Design. 1 Hour.
PR: ENGR 101 with a minimum grade of C-. Introduction to the process of drawing and creating mechanical objects using a computer. Basics of engineering graphics and creation of computer-based models of components and assemblies.

MAE 215. Intro to Aerospace Engineering. 3 Hours.
PR: (ENGR 102 or CHE 102 or MAE 102) and (MATH 154 or MATH 155 with grade of C- or higher). Fundamental physical quantities of a flowing gas, standard atmosphere, basic aerodynamic equations, airfoil nomenclature, lift, drag and aircraft performance. Digital computer usage applied to aerodynamic and performance problems and aircraft design. (3 hr. lec.).

MAE 216. Intermediate Engineering Computation. 1 Hour.
PR: (ENGR 102 or MAE 102 or CHE 102) with a minimum grade of C-. This course will use basic coding skills learned in ENGR 102 / MAE 102 / CHE 102 and apply them to intermediate complex coding problems. Students will learn to use the software debugger to solve coding issues that arise in more complex routines. Students will work individually to solve intermediate difficult engineering-oriented problems.

MAE 241. Statics. 3 Hours.
PR: WVU sections require PHYS 111 and (MATH 154 or MATH 155) all with a grade of C- or better, WVUIT sections require MATH 155 as a prerequisite. Engineering applications of force equilibrium. Vector operations, couples and moments, resultants, centers of gravity and pressure, static friction, free-body diagrams, trusses and frames.

MAE 242. Dynamics. 3 Hours.
PR: WVU sections require MATH 156 with a grade of C- or better and MAE 241, WVUIT sections require MATH 156 and MAE 241 as prerequisites. Newtonian dynamics of particles and rigid bodies. Engineering applications of equations of motion, work and energy, conservative forces, acceleration in several coordinate systems, relative motion, instantaneous centers, and plane motion.

MAE 243. Mechanics of Materials. 3 Hours.
PR: WVU sections require MATH 156 with a grade of C- or better and MAE 241, WVUIT sections require MATH 156 and MAE 241 as prerequisites. Stress deformation, and failure of solid bodies under the action of forces. Internal force resultants, stress, strain, Mohr's circle, and mechanical properties of materials, generalized Hooke's law. Axial bending and buckling loads, and combinations.

MAE 244. Dynamics and Strength Laboratory. 1 Hour.

MAE 253. Fundamentals of Materials Engineering. 2 Hours.
PR: CHEM 115 and PHYS 111 with a minimum grade of C- in both. Atomic and crystallographic structure of materials, thermal and mechanical processing influences on microstructure, and composition and microstructural effects on mechanical and physical properties attributes.

MAE 254. Materials Engineering Laboratory. 1 Hour.
PR: CHEM 115 and PHYS 111 and PR or CONC: MAE 253 with a minimum grade of C- in all. Introduction to microscopy and spectroscopy material microstructure characterization techniques; materials macroscopic physical properties based on processing history, chemistry, crystal structure and microstructure; and methods to identify material needs for engineering application.

MAE 271. Mechanical and Aerospace Engineering Design 1. 1 Hour.
PR: Consent. Hands-on applications of concepts learned in other courses to meet specified performance or competition criteria of capstone design courses. Introductory concepts of an integrated sophomore-junior-senior design team.

MAE 293. Special Topics. 1-6 Hours.
PR: Consent. Investigation of topics not covered in regularly scheduled courses.
MAE 298. Honors. 1-6 Hours.
PR: Students in the Honors Program and consent by the honors director. Independent reading, study, or research.

MAE 312. Introduction to Mechanical Design. 3 Hours.
Introduction to the process of designing mechanical objects and machines composed of multiple objects. Basics of engineering graphics, and creation of computer-based models of machine components and assemblies.

MAE 316. Analysis-Engineering Systems. 3 Hours.
PR: MATH 261 with a grade of C- or better, (ENGR 102 or CHE 102 or MAE 102), and MAE 242. Analytical, numerical, and computational techniques to analyze and solve engineering problems. Mathematical modeling, solution strategies, and analysis of results. Statistical techniques including probability distribution functions, regression analysis, and curve fitting.

MAE 320. Thermodynamics. 3 Hours.
PR: WVU sections require PHYS 111 and MATH 156, WVUIT sections require MATH 156 as a prerequisite. Principles of thermodynamics; properties of ideal gases and vapors; first and second laws of thermodynamics; basic gas and vapor cycles; basic refrigeration.

MAE 321. Applied Thermodynamics. 3 Hours.
PR: WVU sections require MAE 320, WVUIT sections require MAE 320 and CHEM 115 and CHEM 115L. Applications to mechanical systems of fundamentals from thermodynamics; availability analysis; applied gas and vapor power cycles; applied refrigeration and psychrometry; mixtures of real gases and vapors; combustion; choked flow nozzles. (3 hr. lec.).

MAE 322. Thermal and Fluids Laboratory. 1 Hour.
PR: MAE 320. Experiments demonstrating fundamental concepts of thermal-fluid systems; hydrostatics, dynamic pressure forces, dimensional analysis, pipe pressure losses, drag on external bodies, flow measurements devices, engine performance, fan and turbine performance, saturated vapor curve determination. (3 hr. lab.).

MAE 331. Fluid Mechanics. 3 Hours.
PR: WVU sections require MATH 251 with a grade of C- or better and MAE 241, WVUIT sections require MATH 156 and MAE 242 as prerequisites. Properties of fluids, fluid statics, inviscid fluid dynamics, fluid kinematics, thermodynamic principles, mass momentum and energy principles, similitude and dimensional analysis, laminar and turbulent flow, viscous effects, flow in pressure conduits and external flows.

MAE 335. Incompressible Aerodynamics. 3 Hours.

MAE 336. Compressible Aerodynamics. 3 Hours.
PR: MAE 320 and (MAE 215 or MAE 331). Analysis and design of compressible, inviscid flows; isentropic flow, shock waves, Prandtl-Meyer expansions, supersonic nozzles and diffusers. Airfoils in compressible flow and small perturbation theory, introduction to hypersonic-flow theory.

MAE 342. Dynamics of Machines. 3 Hours.
PR: WVU sections require MAE 242 and PR or CONC: MATH 261, WVUIT sections require MAE 242 as a corequisite. Analysis of motion and forces in linkages and mechanisms. Synthesis of plane mechanisms, analysis of cams, gears and gear trains. Fundamentals of vibrations in machines. Analysis techniques include graphical, analytical and computational methods.

MAE 343. Intermediate Mechanics of Materials. 3 Hours.

MAE 345. Aerospace Structures. 3 Hours.

MAE 354. Materials Processing and Manufacturing. 3 Hours.
PR: MAE 253 or CHE 366. Processing and manufacturing methods for metals, ceramics, polymers, composites, and hybrid materials; considerations for nano-, micro-, and macro-scale; relationships between process method, material structure, properties, cost, process energy requirements, and geometric limitations; and process selection based on materials selection and desired properties.

MAE 355. Mechanical and Physical Properties of Materials. 3 Hours.
PR: MAE 253 or CHE 366. Mechanical, electrical, magnetic, optical properties of materials; relationships between materials synthesis, microstructure and physical properties; and selection of materials for application.

MAE 361. Introduction to Unmanned Aerial Systems. 3 Hours.
PR: MAE 215. Introduction to history, current domestic regulations, and policies on unmanned aerial systems. Vehicle aerodynamics, propulsion, structures, launch and recovery, mission planning, weapons and sensor payloads, and ground and airborne system data links. Use of numerical tools, computer-aided design tools, and common engineering planning tools.

MAE 365. Flight Dynamics. 3 Hours.
MAE 370. Aviation Ground School. 3 Hours.
Nomenclature of aircraft, aerodynamics, civil air regulations, navigation, meteorology, aircraft, and aircraft engines. May serve as preparation for private pilot written examinations. (2 hr. lec., 2 hr. lab.) (Not approved as a technical elective.).

MAE 371. Mechanical and Aerospace Engineering Design 2. 2 Hours.
PR: MAE 271 with a grade of C or better or Consent. Continued applications of concepts learned in other courses to meet specified performance or competition criteria of capstone design courses. Intermediate concepts of an integrated sophomore-junior-senior design team.

MAE 411. Advanced Mechatronics. 3 Hours.
PR: MATH 261 with a grade of C or better and MAE 211 and EE 221 and EE 222. Instrumentation and measurements emphasizing systems that combine electronics and mechanical components with modern controls and microprocessors. First and second order behavior, transducers and intermediate devices, measurement of rapidly changing engineering parameters, microcontrollers and actuators. (2 hr. lec., 3 hr. lab.).

MAE 412. Mobile Robotics. 3 Hours.
PR: Consent. Introduction to fundamental topics in Mobile robotics; methods of locomotion; common mobile robot sensors, state estimation and navigation algorithms; path planning and obstacle avoidance methods; robot decision making and control processes; and mobile robot systems design.

MAE 415. Balloon Satellite Project 1. 1 Hour.
Student teams propose, design, construct, and test experimental packages, launched as payloads via a weather balloon that is tracked and recovered. Data acquired by the experimental payloads is analyzed.

MAE 417. Balloon Satellite Project 2. 2 Hours.
PR: MAE 415. Student teams propose, design, construct, and test complex experimental packages, launched as payloads via a weather balloon that is tracked and recovered. Data acquired by the experimental payloads is analyzed.

MAE 421. Problems in Thermodynamics. 3 Hours.
PR: MAE 321 or consent. Thermodynamic systems with special emphasis on actual processes; problems designed to strengthen the background of the student in the application of the fundamental thermodynamic concepts. (3 hr. lec.).

MAE 423. Heat Transfer. 3 Hours.
PR: WVU sections require MATH 261 with a grade of C- or better and MAE 320 and (MAE 331 or MAE 335), WVUIT sections require MAE 331 and MAE 321 as prerequisites and MAE 419 concurrently. One-, two-, three-dimensional steady state conduction: transient conduction; free and forced convection; radiation; heat exchangers; heat and mass transfer by analytical, numerical analogical and experimental methods; design of thermal systems.

MAE 424. Applications in Heat Transfer. 3 Hours.
PR: MAE 423. Application of basic heat transfer theory and digital computation techniques to problems involving heat exchangers, power plants, electronic cooling, manufacturing processes, and environmental problems. (3 hr. lec.).

MAE 425. Internal Combustion Engines. 3 Hours.
PR: WVU sections require MAE 320, WVUIT sections require MAE 321. IC engine operating characteristics; engine cycles; thermochemistry and fuels; air and fuel induction; fluid motion within combustion chamber; combustion; exhaust flow; emissions and air pollution; heat transfer in engines; friction and lubrication; advanced engine concepts.

MAE 426. Flight Vehicle Propulsion. 3 Hours.

MAE 427. Heating, Ventilating, and Air Conditioning. 3 Hours.
PR: WVU sections require MAE 320 or consent, WVUIT sections require MAE 423. Air and humidity relations; comfort and indoor air quality; building heat transfer; design heating and cooling loads; air distribution; refrigeration; systems and equipment; system energy analysis; control systems.

MAE 430. Microgravity Research 1. 3 Hours.
Student team conceives and proposes a unique research experiment, to be flown on NASA microgravity research aircraft. Team also begins design, construction, and testing of apparatus.

MAE 431. Microgravity Research 2. 3 Hours.
PR: MAE 430. Student team completes design, construction, and testing of research experiment; that is then flown on NASA microgravity research aircraft. Data required from experiment is analyzed and reported.

MAE 432. Engineering Acoustics. 3 Hours.
PR: MATH 261 or consent. Theory of sound propagation and transmission. Important industrial noise sources and sound measurement equipment. Selection of appropriate noise criteria and control methods. Noise abatement technology. Laboratory studies and case histories. (3 hr. lec.).

MAE 433. Computational Fluid Dynamics. 3 Hours.
PR: MAE 316 and (MAE 331 or MAE 335) with a grade of C or better in each, or consent. Introduction to modern computational fluid dynamics. Development and implementation of finite-difference schemes for numerical flow solution. Grid Generation. Explicit, implicit, and iterative techniques. Emphasis on applications. Validation and verification of solution. (3 hr. lec.).
MAE 434. Experimental Aerodynamics. 2 Hours.
PR: MAE 336. Aerodynamic testing and instrumentation. Supersonic and low-speed wind tunnel testing including shock waves, aerodynamic forces, pressure distribution on an airfoil and boundary layers. Application of schlieren optics, thermal anemometry and laser doppler velocimetry. (1 hr. lec., 3 hr. lab.).

MAE 437. Vertical/Short Takeoff and Landing Aerodynamics. 3 Hours.
PR: MAE 336. Fundamental aerodynamics of V/STOL aircraft. Topics include propeller and rotor theory, helicopter performance, jet flaps, ducted fans, and propeller-wing combinations. (3 hr. lec.).

MAE 438. Introduction to Gas Dynamics. 3 Hours.
PR: MAE 331 or consent. Fundamentals of gas dynamics, one-dimensional gas dynamics and wave motion, measurement, effect of viscosity and conductivity, and concepts of gas kinetics. (3 hr. lec.).

MAE 439. Hypersonic Gas Dynamics. 3 Hours.
PR: MAE 336 or consent. Hypersonic shock and expansion wave relations; hypersonic inviscid flowfields: approximate and numerical methods, blast wave theory; hypersonic boundary layers and aerodynamic heating. (3 hr. lec.).

MAE 441. Gas Turbine Design and Durability. 3 Hours.
PR: MAE 320 and (MAE 335 or MAE 331). Design of gas turbine engines for aircraft propulsion and industrial power generation. Theory of operation and characteristics of gas turbines. Design considerations, component operation, and durability of the individual components.

MAE 442. Mechanical Vibrations. 3 Hours.
PR: MAE 316 and MAE 343 with a minimum grade of C- in both. Response analysis of one, two, and multi degree of freedom systems; natural frequencies and modes of vibrations; damping; methods to avoid excessive vibrations; whirling of rotating shafts; balancing; vibration isolation; vibration measurements; and instrumentation.

MAE 443. Mechanical Behavior and Materials. 3 Hours.
PR: MAE 343 or consent. Reveal the mechanical behavior of materials, including elastic behavior, plastic deformation, high temperature deformation and deformation of non-crystalline materials like polymer and composites. It also covers the materials microstructures and their effects on mechanical properties.

MAE 446. Mechanics of Composite Materials. 3 Hours.
PR: MATH 251 and MAE 243. Fundamental methods for structural analysis of fiber reinforced composites. Particularities of composite applications in design and manufacturing of structural components: performance tailoring, failure criteria, environmental effects, joining and processing. (3 hr. lec.).

MAE 447. Aeroelasticity. 3 Hours.
PR: MAE 345. Vibrating systems of single degree and multiple degrees of freedom, flutter theory and modes of vibration, torsional divergence and control reversal. (3 hr. lec.).

MAE 454. Machine Design and Manufacturing. 3 Hours.
PR: WVU sections require MATH 261 with a grade of C- or better and MAE 342 and MAE 343, WVUIT sections require MAE 243 as a prerequisite and MAE 342 as a corequisite. Working stresses, theories of failure, fatigue, welded joints, design of machine elements such as shafting, screws, springs, belts, clutches, brakes, gears, bearings, and miscellaneous machine elements. Design for manufacturability considerations.

MAE 456. Computer-Aided Design and Finite Element Analysis. 3 Hours.
PR: WVU sections require MATH 261 with a grade of C- or better and MAE 343 and (MAE 342 or MAE 345). WVUIT sections require MATH 251 and MAE 454 and MAE 455. Computer aided design fundamentals and formulation of the stiffness matrix and load vector 1D and 2D elements based on variational principles. Analytical and finite element solution of vibration and heat transfer problems. Explore applications of CAD/FEM packages in design case studies.

MAE 457. UAV Path Planning and Trajectory Tracking. 3 Hours.
PR: MAE 365 or MAE 466 or consent of instructor, prior experience with Matlab and Simulink. Introduction to algorithms for unmanned aerial vehicle (UAV) path planning and trajectory tracking: development, implementation, and testing through simulation.

MAE 459. Hybrid Electric Vehicle Propulsion and Control. 3 Hours.
Hybrid electric vehicle propulsion system modeling and simulation. Hybrid electric vehicle powertrain architectures. Mathematical modeling of hybrid vehicle components including vehicle longitudinal dynamics, batteries, electric motors, engines, transmissions, inverters. Development of hybrid supervisory control algorithms for powertrain management and optimization.

MAE 460. Automatic Controls. 3 Hours.
PR: WVU sections require MATH 261 with a grade of C- or better, WVUIT sections require EE 221 and MATH 261. Modeling and simulation of mechanical systems using transfer functions. 1st and 2nd order systems with associated specification. Block algebra and concept of Equivalent Transfer Function. Steady state errors. Routh-Hurwitz criteria for stability. Root locus based design of proportional controllers and compensators. Introduction to state variables modeling.

MAE 461. Applied Feedback Control. 3 Hours.
PR: MAE 460 or Consent. Application of automatic control theory. Transfer functions and block diagrams for linear physical systems. Proportional, integral, and derivative controllers. Transient and frequency response using Laplace transformation. (3 hr. lec.).
MAE 462. Design of Robotic Systems. 3 Hours.
PR: Consent. Mechanical automation design associated with robotic systems, including economic justification and ethics. Geometric choices and controller specifications for programmable manipulators. Workstation strategies such as CNC and CIM for computer-based flexible manufacturing. (3 hr. lec.).

MAE 465. Flight Mechanics 2. 3 Hours.
PR: MAE 365. Fundamental concepts of feedback control system analysis and design. Automatic flight controls, and human pilot plus airframe considered as a closed loop system. Stability augmentation. (3 hr. lec.).

MAE 466. Spacecraft Dynamics. 3 Hours.

MAE 467. Introduction to Flight Simulation. 3 Hours.
PR: MAE 365. Fundamental concepts of flight simulation are introduced through interaction with tools of different complexity from simplified linear and non-linear models to a six degrees-of-freedom motion based flight simulator.

MAE 468. UAV Guidance, Navigation & Control. 3 Hours.
PR: MAE 365 or MAE 466. Introduction to multi-rotor unmanned aerial vehicle (UAV) dynamics. Basic filters for UAV state estimation. Introduction to UAV attitude stabilization and altitude holding controllers. Simplified UAV path planning algorithms.

MAE 470. Unmanned Aerial Vehicle Design/Build/Fly Competition 1. 1 Hour.
PR: Consent. Hands-on applications of concepts learned in other courses to meet specified flight performance and competition criteria. Advanced aerodynamic and material concepts are utilized by an integrated sophomore, junior, senior team.

MAE 471. Principles of Engineering Design. 3 Hours.
PR: MAE 320 and MAE 331 and MAE 342 and MAE 343. Topics include design problems in mechanical engineering, deal with analytical and experimental methodologies in fluid, thermal, and structural areas, decision-making techniques, optimization, computer aided design and economic consideration.

MAE 472. Engineering Systems Design. 3 Hours.
PR: MAE 320 and MAE 331 and MAE 342 and MAE 343. Identification and solution of challenging engineering problems through rational analysis and creative synthesis. Planning, designing, and reporting on complex systems on individual and group basis. (6 hr. lab.).

MAE 473. Bioengineering. 3 Hours.
PR: MAE 243 or consent. Introduction to human anatomy and physiology using an engineering systems approach. Gives the engineering student a basic understanding of the human system so that the student may include it as an integral part of the design. (3 hr. lec.).

MAE 474. UAV Design/Build/Fly Comp. 1-3 Hours.
PR: Consent. Hands-on applications of concepts learned in other courses to meet specified flight performance and competition criteria. Advanced aerodynamic and materials concepts are utilized by an integrated sophomore-junior-senior team.

MAE 475. Flight Vehicle Design-Capstone. 3 Hours.
PR: ENGL 102 and MAE 215 and MAE 365 or consent. Preliminary design of flight vehicles; with regard for performance and stability requirements, considering aerodynamics, weight and balance, structural arrangement, configuration, cost safety, guidance, and propulsion effects. (1 hr. lec., 6 hr. lab.).

MAE 476. Space Flight and Systems. 3 Hours.
PR: MAE 316. Introduction to fundamental concepts of space flight and vehicles, emphasizing performance aspects and basic analytical expressions. Common analysis methods and design criteria for launch vehicles, orbital mechanics, atmospheric re-entry, stabilization, thermal, power, and attitude control.

MAE 477. Space Systems Design. 3 Hours.
PR: MAE 475 or MAE 471. Conceptual and/or preliminary design of space vehicles and/or systems including structures, CAD, orbital mechanics, propulsion, thermal control, life support, power systems, communications, system integration and cost analysis. (1 hr. lec., 6 hr. lab.).

MAE 478. Guided Missile Systems. 3 Hours.

MAE 479. Space Mechanics. 3 Hours.

MAE 482. Flight Simulation for Aircraft Safety. 3 Hours.
PR: MAE 365 or consent. Introduction to flight modeling and simulation tools for aircraft health management through analysis and accommodation of abnormal flight conditions.
MAE 484. Spacecraft Propulsion. 3 Hours.
PR: MAE 336. Brief introduction to aircraft propulsion including turbojets. Introduction to rocket and spacecraft propulsion. The rocket equation, staging, liquid rocket engines and solid rocket motors, thermochemistry, and combustion.

MAE 485. Flight Vehicle Design 2. 3 Hours.
PR: MAE 475. Detailed design of a major aircraft component and evaluation through experiments or simulation of performance and design requirements compliance.

MAE 486. Spacecraft Design 1. 3 Hours.
PR: MAE 215 and MAE 316 and MAE 476. Engages students into the process of designing spacecraft and space missions as it is executed in both government and industry. Addresses each of the major subsystems found in most modern spacecraft. Includes computer and hands-on laboratory assignments.

MAE 487. Spacecraft Design 2. 3 Hours.
PR: MAE 486. The course is focused on a team-based design exercise to develop an end-to-end spacecraft mission concept. Typical process issues are addressed such as science investigation, trajectory analysis, detailed design of each spacecraft subsystem, discussion of engineering trade studies, risk analysis, budget, and schedule.

MAE 490. Teaching Practicum. 1-3 Hours.
PR: Consent. Teaching practice as a tutor or assistant.

MAE 491. Professional Field Experience. 1-18 Hours.
PR: Consent. (May be repeated up to a maximum of 18 hours.) Prearranged experiential learning program, to be planned, supervised, and evaluated for credit by faculty and field supervisors. Involves temporary placement with public or private enterprise for professional competence development.

MAE 493. Special Topics. 1-6 Hours.
PR: Consent. Investigation of topics not covered in regularly scheduled courses.

MAE 494. Seminar. 1-3 Hours.
PR: Consent. Presentation and discussion of topics of mutual concern to students and faculty.

MAE 495. Independent Study. 1-6 Hours.
Faculty supervised study of topics not available through regular course offerings.

MAE 496. Senior Thesis. 1-3 Hours.
PR: Consent.

MAE 497. Research. 1-6 Hours.
Independent research projects.

MAE 498. Honors. 1-3 Hours.
PR: Students in Honors Program and consent by the honors director. Independent reading, study or research.