Department of Industrial Engineering

Degree Offered

• Bachelor of Science in Industrial Engineering (B.S.I.E.)

Nature of Program

Industrial engineering is the discipline of engineering concerned with the design, improvement, and installation of integrated systems of people, material, information, equipment, and energy to assure performance, reliability, maintainability, schedule adherence, and cost control. Industrial engineers look at the "big picture" of an operation or system and bridge the gap between management and operations. They deal with and motivate people as well as determine what tools should be used and how they should be used. Industrial engineers use computers and sophisticated software as tools to solve complicated problems to design, quantify, predict, and evaluate the performance of all types of complex technologies and systems.

The mission of the B.S.I.E. program at WVU is to advance the industrial engineering profession through innovative and high-quality academic programs, relevant research, and professional services that address the needs of West Virginia, the nation, and the world. The industrial engineering students at WVU are taught to draw upon specialized knowledge and skills in the mathematical, physical, and social sciences, together with the principles and methods of engineering analysis and design to specify, predict, and evaluate the results to be obtained from such systems. They are introduced to state-of-the-art software in their coursework for data analysis, information management, scheduling, quality control, optimization, and other practices and procedures used by the industrial engineering profession in highly evolving industries of the 21st century.

The discipline of industrial engineering has a rich, ever-increasing diversity of applications. Traditionally, industrial engineers have been employed by manufacturing companies to do facilities and plant design, plant management, quality control, ergonomics, and production engineering. Today, however, industrial engineers are employed in almost any type of industry, business, or institution. Because of their skills, industrial engineers are more widely distributed and in greater demand among more industries than any other engineering discipline.

As an industrial engineer educated at WVU, you can expect to have employment opportunities in manufacturing companies, insurance companies, banks, hospitals, technical sales, pharmaceutical companies, retail organizations including e-business, airlines, government agencies, consulting firms, construction, transportation, public utilities, social service, electronics, digital and wireless communications, etc. The diverse orientation of industrial engineering, coupled with the skills and training you receive at WVU, make you a prime source of management talent that offers unique professional advancement opportunities.

The B.S.I.E. program at WVU devotes considerable attention to the individual needs of the student. It is committed to develop student strengths in technical abilities, personal development, problem solving, and practical experience, preparing them for careers in industry, business, government, or advanced professional degrees. One of the defining attributes in the success of the department is the dedication and talent of its faculty and staff. The aggregate careers of our faculty and staff represent over 300 years of service to students at WVU. In these 300 years of service are embodied the wisdom and experience to successfully prepare industrial engineers for the 21st century.

The faculty works extensively with nearly 300 sophomore, junior, and senior students in such areas as communication skills, personal growth and development, creation of summer internship opportunities, senior capstone project experience, and permanent job opportunities. As faculty and staff, we are committed to provide for our students:

• A friendly, open-door, collegial environment
• Personable faculty mentoring students
• Teaching concepts and techniques for today’s demands
• Quality courses that are innovative and challenging
• Placement in the jobs they want
• Notable life-long successes

The industrial engineering program is accredited by the Engineering Accreditation Commission (EAC) of ABET, http://www.abet.org.

Program Educational Objectives

Drawing from the University’s mission, the departmental mission, the needs of our constituents, and ABET Engineering Criteria, the following educational objectives were developed. Within a few years of graduation, an IE graduate...

• Creates value by applying the appropriate industrial engineering methods and tools to organizations through critical and creative thinking, structured problem solving, analysis, evaluation, and improvement of systems and processes.
• Communicates effectively across disciplines and cultures to influence decisions and lead activities in support of organizational goals and objectives.
• On a continual basis, pursues professional development and inquiry via graduate study, continuing education and/or training and development through employer-based or industry/sector groups.
• Works collaboratively as both a member and leader of cross-functional teams comprised of members with varying experience levels, organizational backgrounds, positions, and geographic locations.
• Demonstrates ethical standards in designing and implementing innovative systems or processes taking into account social responsibility, global responsibility, and overall benefit to organizational constituents.

Student Outcomes
Upon graduation, all Bachelor of Science students in Industrial Engineering will have acquired the:

• Ability to use modern and classical industrial engineering methodologies such as operations research, manufacturing systems, computer programming and simulation, production systems, human factors and ergonomics, engineering statistics and quality control, and engineering economics
• Ability to apply knowledge of math, science, and general engineering
• Ability to design and conduct experiments, analyze and interpret data, develop implementation strategies, and shape recommendations so that results will be achieved and findings will be communicated effectively
• Ability to work individually, on teams, and on multi-disciplinary teams to identify, formulate, and solve problems using industrial engineering knowledge, skills, and tools
• Ability to design and implement or improve integrated systems that include people, materials, information, equipment, and energy using appropriate analytical, computational, and experimental practices
• Broad education necessary to develop and maintain professional ethics and understand the comprehensive impact of their solutions on individuals and the society
• Recognition of the need for and an ability to engage in life-long learning
• Professional characteristics expected of a successful industrial engineer

FACULTY
CHAIR
• Kenneth R Currie - Ph.D., P.E., (West Virginia University)
 Manufacturing systems design, Optimization, Automation & Controls, Healthcare Systems Engineering

PROFESSORS
• Rashpal S. Ahluwalia - Ph.D., P.E. (Western Ontario University)
 Manufacturing systems, Quality and reliability engineering, Robotics and automation
• Jack Byrd Jr. - Ph.D., P.E. (West Virginia University)
 Operations research, Workforce development, Work design, Integrated product development
• B. Gopalakrishnan - Ph.D., P.E., CEM (Virginia Polytechnic Institute and State University)
 Manufacturing processes and systems engineering, Information systems, Artificial intelligence applications, Expert systems development, Mechatronics, Facilities planning and materials handling, Databases, Industrial energy/waste productivity management
• Steven Guffey - Ph.D., C.I.H. (North Carolina State University)
 Ventilation systems theory and design, Noise measurement and control, Exposure assessment
• Majid Jaridi - Ph.D. (University of Michigan)
 Statistics, Quality control, Forecasting and transportation research
• Gary Winn - Ph.D. (Ohio State University)
 Construction safety, Transportation safety and program evaluation, Total quality management, Theory of paradigm shifts
• David Wyrick - Ph.D., P.E., P.E.M. (University of Missouri-Rolla)
 Associate Dean for Academic Affairs, Engineering management, Engineering education, Effective management of technology in SMEs

ASSOCIATE PROFESSORS
• Elyce Biddle - Ph.D. (West Virginia University)
 Teaching Associate Professor, Economics of safety, Risk management, Injury prevention
• Alan McKendall Jr. - Ph.D. (University of Missouri - Columbia)
 Operations research, Meta-heuristics, Facilities layout and materials handling, Project scheduling, Integrated production systems
• Ashish Nimbarte - Ph.D. (Louisiana State University)
 Occupational biomechanics, human factors engineering, Industrial ergonomics, Industrial hygiene, Occupational safety and health
• Feng Yang - Ph.D. (Northwestern University)
 Simulation, Applied statistics, Stochastic Processes

ASSISTANT PROFESSORS
• Leily Farrokhvar - Ph.D. (Virginia Tech University)
 Logistics systems modeling and analysis, Supply chain integration, Large scale optimization, Transportation and distribution networks, Decision support development for emergency and disaster management, Applied operations research in healthcare
• Xinjian (Kevin) He - Ph.D. (University of Cincinnati)
 Respiratory protection, air purification and filtration, Aerosol measurement and characterization, Occupational exposure assessment, Underground coal mine ventilation and fire protection
• Xiaopeng Ning - Ph.D. (Iowa State University)
 Occupational safety and health, Occupational biomechanics, Human factors engineering, Industrial ergonomics
• Thorsten Wuest - Ph.D. (Dr.-Ing.; University of Bremen, Germany)
 Smart and advanced manufacturing, Intelligent manufacturing systems, Machine learning / Big data in manufacturing applications, Product lifecycle management, Smart product design, Information and knowledge management, IPPS / Servitization

ADJUNCT AND VISITING PROFESSORS
• Lorenzo G. Cena - Ph.D. (University of Iowa)
 Occupational health and safety, Aerosol generation and characterization, Exposure assessment
• Christopher Coffey - Ph.D. (West Virginia University)
 Occupational Safety and Health, Assessment, Evaluation of Respiratory protective equipment
• Ren Dong - Ph.D. (Concordia University)
 Human Factors Engineering, Ergonomics, Safety engineering
• John R. Etherton - Ph.D. (West Virginia University)
 Safety engineering
• Martin Harper - Ph.D. (London School of Hygiene and Tropical Medicine)
 Industrial hygiene, Exposure assessment
• James Harris - Ph.D., P.E. (West Virginia University)
 Safety, Human factors
• Hongwei Hsiao - Ph.D. (University of Michigan)
 Safety, Human factors
• Kevin Michael - Ph.D. (The Pennsylvania State University)
 Acoustics, Hearing protection, Industrial hygiene
• Christopher Pan - Ph.D. (University of Cincinnati)
 Human factors engineering, Safety engineering, Ergonomics
 Industrial hygiene, Exposure assessment
• M. Abbas Virgi - Sc.D., C.I.H. (University of Massachusetts)
 Exposure assessment, Epidemiology, Biostatistics
• Ziqing Zhuang - Ph.D. (West Virginia University)
 Exposure assessment, Assessment and evaluation of respiratory protective equipment

LECTURERS
• Michael Carr - MSIE (West Virginia University)
 Decision support systems, Computer applications
• Kenton Colvin - MSIE (West Virginia University)
 Production planning and control, Manufacturing processes
• Shanti Hamburg - M.S. (West Virginia University)
 Prototyping, manufacturing systems, Digital manufacturing, Unmanned aerial vehicles
• Daniel Kniska - MSIE (West Virginia University)
 Engineering economy, Statistics, Production planning and control

PROFESSOR EMERITUS
• Robert C. Creese - Ph.D., P.E. (Pennsylvania State University)
 Manufacturing processes/systems, foundry engineering, Cost engineering, Engineering economics
• Daniel E. Della-Giustina - Ph.D. (Michigan State University)
 Playground and recreation safety, Sport safety, Highway and traffic management, Safety, fire, and emergency response
• Wafik Iskander - Ph.D., P.E. (Texas Tech University)
Operations research and optimization, Simulation modeling and analysis, Production planning and control, Applied statistics, Energy efficiency, Transportation planning

- Warren Myers - Ph.D., C.I.H. (West Virginia University)
 Industrial hygiene and safety, Worker exposure assessment and modeling, Aerosol filtration, Occupational respiratory protection design and testing
- Ralph W. Plummer - Ph.D. (West Virginia University)
 Systems safety engineering, Energy conservation, Human factors, Ergonomics

ASSOCIATE PROFESSOR EMERITUS
- Andrew Sorine - Ph.D. (West Virginia University)
 Benchmarking, Safety and health programs, Safety management information systems

Click here to view the Suggested Plan of Study (p. 6)

Curriculum in Industrial Engineering

GENERAL EDUCATION FOUNDATIONS

Please use this link to view a list of courses that meet each GEF requirement. (http://registrar.wvu.edu/gef)

NOTE: Some major requirements will fulfill specific GEF requirements. Please see the curriculum requirements listed below for details on which GEFs you will need to select.

General Education Foundations

<table>
<thead>
<tr>
<th>F1 - Composition & Rhetoric</th>
<th>3-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 101</td>
<td></td>
</tr>
<tr>
<td>& ENGL 102</td>
<td></td>
</tr>
<tr>
<td>or ENGL 103</td>
<td></td>
</tr>
<tr>
<td>Introduction to Composition and Rhetoric and Composition, Rhetoric, and Research Accelerated Academic Writing</td>
<td></td>
</tr>
</tbody>
</table>

F2A/F2B - Science & Technology	4-6
F3 - Math & Quantitative Skills	3-4
F4 - Society & Connections	3
F5 - Human Inquiry & the Past	3
F6 - The Arts & Creativity	3
F7 - Global Studies & Diversity	3
F8 - Focus (may be satisfied by completion of a minor, double major, or dual degree)	9

Total Hours: 31-37

Please note that not all of the GEF courses are offered at all campuses. Students should consult with their advisor or academic department regarding the GEF course offerings available at their campus.

Curriculum Requirements

To be eligible for graduation with a bachelor of science in industrial engineering, a student must meet the University’s undergraduate degree requirements, take all the courses indicated below, and attain a grade point average of 2.0 or better in all industrial engineering courses. If an industrial engineering course is repeated, only the last grade received is used to compute the major grade point average, and the course credit hours are counted only once. This requirement assures that the student has demonstrated overall competence in the major.

Freshman Engineering Requirements

<table>
<thead>
<tr>
<th>ENGR 101</th>
<th>Engineering Problem Solving 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Problem Solving:</td>
<td>3</td>
</tr>
<tr>
<td>CHE 102</td>
<td>Introduction to Chemical Engineering</td>
</tr>
<tr>
<td>ENGR 102</td>
<td>Engineering Problem-Solving 2</td>
</tr>
<tr>
<td>ENGR 103</td>
<td>Introduction to Nanotechnology Design</td>
</tr>
<tr>
<td>MAE 102</td>
<td>Introduction to Mechanical and Aerospace Engineering Design</td>
</tr>
<tr>
<td>ENGR 199</td>
<td>Orientation to Engineering</td>
</tr>
</tbody>
</table>

Non-Industrial Engineering Core

<table>
<thead>
<tr>
<th>CHEM 115</th>
<th>Fundamentals of Chemistry (GEF 2B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 201</td>
<td>Principles of Microeconomics (GEF 4)</td>
</tr>
<tr>
<td>ECON 202</td>
<td>Principles of Macroeconomics</td>
</tr>
<tr>
<td>Calculus I (GEF 3):</td>
<td>4</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>MATH 155</td>
<td>Calculus 1 (Minimum grade of C- is required)</td>
</tr>
<tr>
<td>MATH 153</td>
<td>Calculus 1a with Precalculus</td>
</tr>
<tr>
<td>MATH 154</td>
<td>and Calculus 1b with Precalculus (Minimum grade of C- is required)</td>
</tr>
<tr>
<td>MATH 156</td>
<td>Calculus 2 (GEF 8 - Minimum grade of C- is required)</td>
</tr>
<tr>
<td>MATH 251</td>
<td>Multivariable Calculus (Minimum grade of C- is required)</td>
</tr>
<tr>
<td>MATH 261</td>
<td>Elementary Differential Equations</td>
</tr>
<tr>
<td>PHYS 111</td>
<td>General Physics (GEF 8)</td>
</tr>
</tbody>
</table>

Select one of the following (GEF 8):

- BIOL 115 | Principles of Biology | 4 |
- CHEM 116 | Fundamentals of Chemistry | |
- PHYS 112 | General Physics | |

Major in Industrial Engineering Requirements

A minimum GPA of 2.0 is required in all IENG courses.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 221</td>
<td>Introduction to Electrical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>EE 222</td>
<td>Introduction to Electrical Engineering Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>IENG 200</td>
<td>Fundamentals of Industrial Engineering</td>
<td>1</td>
</tr>
<tr>
<td>IENG 213</td>
<td>Engineering Statistics</td>
<td>3</td>
</tr>
<tr>
<td>IENG 220</td>
<td>Re-Engineering Management Systems</td>
<td>3</td>
</tr>
<tr>
<td>IENG 301</td>
<td>Materials and Costing</td>
<td>1</td>
</tr>
<tr>
<td>IENG 302</td>
<td>Manufacturing Processes</td>
<td>2</td>
</tr>
<tr>
<td>IENG 303</td>
<td>Manufacturing Processes Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>IENG 305</td>
<td>Introduction to Systems Engineering</td>
<td>2</td>
</tr>
<tr>
<td>IENG 314</td>
<td>Advanced Analysis of Engineering Data</td>
<td>3</td>
</tr>
<tr>
<td>IENG 316</td>
<td>Industrial Quality Control</td>
<td>3</td>
</tr>
<tr>
<td>IENG 331</td>
<td>Computer Applications in Industrial Engineering</td>
<td>3</td>
</tr>
<tr>
<td>IENG 343</td>
<td>Production Planning and Control</td>
<td>3</td>
</tr>
<tr>
<td>IENG 350</td>
<td>Introduction to Operations Research</td>
<td>3</td>
</tr>
<tr>
<td>IENG 360</td>
<td>Human Factors Engineering</td>
<td>3</td>
</tr>
<tr>
<td>IENG 377</td>
<td>Engineering Economy</td>
<td>3</td>
</tr>
<tr>
<td>IENG 445</td>
<td>Project Management for Engineers</td>
<td>3</td>
</tr>
<tr>
<td>IENG 446</td>
<td>Plant Layout/Material Handling</td>
<td>3</td>
</tr>
<tr>
<td>IENG 455</td>
<td>Simulation by Digital Methods</td>
<td>3</td>
</tr>
<tr>
<td>IENG 471</td>
<td>Design of Productive Systems 1 (Fulfills Writing and Communications Skills Requirement)</td>
<td>3</td>
</tr>
<tr>
<td>IENG 472</td>
<td>Design of Productive Systems 2</td>
<td>3</td>
</tr>
<tr>
<td>MAE 241</td>
<td>Statics</td>
<td>3</td>
</tr>
<tr>
<td>MAE 243</td>
<td>Mechanics of Materials</td>
<td>3</td>
</tr>
<tr>
<td>IENG Technical Electives (Any 400 and 500 level IENG courses)</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

MAE Elective - Choose one of the following:

- MAE 242 | Dynamics | 3 |
- MAE 320 | Thermodynamics | |
- MAE 331 | Fluid Mechanics | |

Additional Technical Electives - Choose two of the following:

- CE 347 | Introduction to Environmental Engineering | |
- CE 414 | Construction Engineering | |
- CS 430 | Advanced Software Engineering | |
- CS 440 | Database Design and Theory | |
- EE 425 | Bioengineering | |
- EE 426 | Biometric Systems | |
- GEOG 350 | Geographic Information Systems and Science | |

IENG 400 level courses

IENG 500 level courses

IH&S 500 level courses
MAE 242 Dynamics
MAE 320 Thermodynamics
MAE 331 Fluid Mechanics
MAE 427 Heating, Ventilating, and Air Conditioning
MATH 343 Introduction to Linear Algebra
MATH 420 Numerical Analysis 1
MATH 441 Applied Linear Algebra
SAFM 470 Managing Construction Safety
STAT 421 Statistical Analysis System (SAS)
STAT 541 Applied Multivariate Analysis
GEF Electives 1, 5, 6, 7 15
Total Hours 129

Suggested Plan of Study

It is important for students to take courses in the order specified as much as possible; all prerequisites and concurrent requirements must be observed. A typical B.S.I.E. degree program that completes degree requirements in four years is as follows.

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Hours Spring</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 155 (GEF 3)</td>
<td>4 MATH 156 (GEF 8)</td>
<td>4</td>
</tr>
<tr>
<td>ENGR 101</td>
<td>2 ENGR 102</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 199</td>
<td>1 PHYS 111 (GEF 8)</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 115 (GEF 2B)</td>
<td>4 GEF Elective 6</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 101 (GEF 1)</td>
<td>3 GEF Elective 7</td>
<td>3</td>
</tr>
<tr>
<td>GEF Elective 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Hours Spring</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 251</td>
<td>4 MATH 261</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 116 or PHYS 112 (GEF 8)</td>
<td>4 MAE 243</td>
<td>3</td>
</tr>
<tr>
<td>MAE 241</td>
<td>3 IENG 213</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 102 (GEF 1)</td>
<td>3 IENG 377</td>
<td>3</td>
</tr>
<tr>
<td>IENG 200</td>
<td>1 EE 221</td>
<td>3</td>
</tr>
<tr>
<td>IENG 220</td>
<td>3 EE 222</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Hours Spring</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 201 (GEF 4)</td>
<td>3 ECON 202</td>
<td>3</td>
</tr>
<tr>
<td>IENG 301</td>
<td>1 IENG 302</td>
<td>2</td>
</tr>
<tr>
<td>IENG 314</td>
<td>3 IENG 303</td>
<td>1</td>
</tr>
<tr>
<td>IENG 305</td>
<td>2 IENG 316</td>
<td>3</td>
</tr>
<tr>
<td>IENG 350</td>
<td>3 IENG 331</td>
<td>3</td>
</tr>
<tr>
<td>IENG 360</td>
<td>3 IENG 343</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Hours Spring</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>IENG Technical Elective</td>
<td>3 IENG 472</td>
<td>3</td>
</tr>
<tr>
<td>IENG 445</td>
<td>3 IENG Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>IENG 455</td>
<td>3 IENG 446</td>
<td>3</td>
</tr>
<tr>
<td>IENG 471</td>
<td>3 MAE Elective</td>
<td>3</td>
</tr>
</tbody>
</table>
Major Learning Goals

INDUSTRIAL ENGINEERING

Upon graduation, all Bachelor of Science students in Industrial Engineering will have acquired the:

Learning Goal #1. Ability to use modern and classical industrial engineering methodologies such as operations research, manufacturing systems, computer programming and simulation, production systems, human factors and ergonomics, engineering statistics and quality control, and engineering economics.

Learning Goal #2. Ability to apply knowledge of math, science, and general engineering.

Learning Goal #3. Ability to design and conduct experiments, analyze and interpret data, develop implementation strategies, and shape recommendations so that results will be achieved and findings will be communicated effectively.

Learning Goal #4. Ability to work individually, on teams, and on multi-disciplinary teams to identify, formulate, and solve problems using industrial engineering knowledge, skills, and tools.

Learning Goal #5. Ability to design and implement or improve integrated systems that include people, materials, information, equipment, and energy using appropriate analytical, computational, and experimental practices.

Learning Goal #6. Broad education necessary to develop and maintain professional ethics and understand the comprehensive impact of their solutions on individuals and the society.

Learning Goal #7. Recognition of the need for and an ability to engage in life-long learning.

Learning Goal #8. Professional characteristics expected of a successful industrial engineer.

IENG 200. Fundamentals of Industrial Engineering. 1 Hour.
PR: Sophomore standing. An introduction to the basic principles of industrial engineering.

IENG 213. Engineering Statistics. 3 Hours.
PR or CONC: MATH 156. The use of basic statistical analysis in engineering decision making, including common statistical distributions encountered in engineering, test of hypotheses, confidence intervals, and introduction to simple linear regression.

IENG 220. Re-Engineering Management Systems. 3 Hours.
PR: Sophomore standing. Principles and techniques associated with system, job and task re-engineering. Work measurement systems, work flow analysis and time study techniques. Introduction to factors influencing people machine.

IENG 293. Special Topics. 1-6 Hours.
PR: Consent. Investigation of topics not covered in regularly scheduled courses.

IENG 301. Materials and Costing. 1 Hour.

IENG 302. Manufacturing Processes. 2 Hours.
PR: MAE 343 or PR or CONC: MAE 343 or IENG 301. Lectures, videos and examples relating to materials, mechanical properties, processing parameters, design, equipment, economics, failure analysis, and processing systems emphasizing casting, powder processing, machining, joining and forming operations.

IENG 303. Manufacturing Processes Laboratory. 1 Hour.
CoReq: IENG 302. Laboratory experiments and demonstrations of the basic manufacturing operations of casting, machining and joining. Process parameter measurement, inspection techniques and CNC programming are performed and laboratory report writing is emphasized.

IENG 305. Introduction to Systems Engineering. 2 Hours.
PR: IENG 213 and IENG 377. This course focuses on systems engineering and analysis. It covers the development and implementation of systems, and their continuous improvement.

IENG 314. Advanced Analysis of Engineering Data. 3 Hours.
PR: IENG 213. Introduction to linear statistical models. Design and analysis of simple experimental configurations occurring frequently in engineering studies. Similarities and differences between regression and experiment design models emphasized in a vector-matrix setting.

IENG 316. Industrial Quality Control. 3 Hours.
PR: IENG 213. Principles and methods for controlling the quality of manufactured products, with emphasis on both economic and statistical aspects of product acceptance and process control.
IENG 331. Computer Applications in Industrial Engineering. 3 Hours.
PR: ENGR 102. Introduction to computer applications in manufacturing. Emphasis on system design and analysis and the role of computers in productivity improvement.

IENG 343. Production Planning and Control. 3 Hours.
PR: IENG 220 and IENG 213. Principles and problems in forecasting, aggregate planning, material management, scheduling, routing, and line balancing.

IENG 350. Introduction to Operations Research. 3 Hours.
PR: IENG 213. An introduction to the basic principles and techniques of operations research. Topics include linear programming, integer programming, transportation and assignment problems, project scheduling, queuing theory, and computer applications.

IENG 360. Human Factors Engineering. 3 Hours.
PR: IENG 213. Includes the study of ambient environment, human capabilities and equipment design. Systems design for the human-machine environment interfaces will be studied with emphasis on health, safety, and productivity.

IENG 377. Engineering Economy. 3 Hours.
Basic concepts of financial analysis, investment planning and cost controls as they apply to management technology investment in manufacturing; financial planning and budgeting as applied to an engineering function.

IENG 405. Design for Manufacturability. 3 Hours.
PR: IENG 302 and IENG 303. Aspects of design, manufacturing and materials; emphasis on design for manufacturability and assembly, including material selection and manufacturing processes on product cost.

IENG 417. Total Quality Management. 3 Hours.
PR: IENG 213. Fundamentals and philosophy of total quality management in industry and government. Includes implementation of quality function deployment and the tools of off-line quality assurance procedures.

IENG 423. Designing Decision Support System. 3 Hours.
PR: IENG 331. Basic concepts of software design of decision support systems that can be used by non-technical personnel in management positions.

PR: IENG 331. Expert systems design and development for manufacturing service applications; knowledge acquisition, representation, search techniques, inference engines, data base interfaces, algorithmic interfaces.

IENG 433. Energy Efficiency and Sustainability. 3 Hours.
Principles of energy efficiency for large industrial and large commercial building systems. Determination of energy usage, use of energy analysis and diagnostic equipment, and the development of energy efficiency measures including the economics related to implementation. Review of energy generation, renewable energy, smart grid, energy management, ASHRAE standards, and LEED. Sustainability aspects of energy efficiency.

IENG 445. Project Management for Engineers. 3 Hours.
PR: ENGR 102. This course provides an introduction to processes, tools, and techniques used to manage engineering projects within the context of an organization. It provides an overview of the engineering project management processes, groups, and knowledge areas defined by the Project Management Institute and introduces Microsoft Project as a project planning tool.

IENG 446. Plant Layout/Material Handling. 3 Hours.
PR: IENG 220 and IENG 350. Facility design and economic selection of material handling equipment in a production/service facility. Emphasizes optimization of materials and information flow.

IENG 455. Simulation by Digital Methods. 3 Hours.
PR: IENG 213 and IENG 331 or consent. Introduction to Monte Carlo simulation methods and their application to decision problems. Student identifies constraints on problems, collects data for modeling and develops computer programs to simulate and analyze practical situations. Interpretation of results emphasized.

IENG 461. System Safety Engineering. 3 Hours.
PR: Consent. The concepts of hazard recognition, evaluation analysis and the application of engineering design principles to the control of industrial hazards.

IENG 471. Design of Productive Systems 1. 3 Hours.
PR: Senior standing and 21 hours of required IENG courses in industrial engineering. The integration of industrial engineering principles in the design of productive systems. Emphasis will be on analysis of different systems for productivity management.

IENG 472. Design of Productive Systems 2. 3 Hours.
PR: IENG 471 and senior standing in industrial engineering. Continuation of IENG 471.

IENG 473. Team Facilitation. 3 Hours.
This course prepares students to facilitate continuous improvement teams. Students learn basics of team operations, facilitation tools and facilitation practices.

IENG 474. Technology Entrepreneurship. 3 Hours.
Basic concepts and practices necessary to convert a technology idea into an entrepreneurial business.
IENG 491. Professional Field Experience. 1-18 Hours.
PR: Consent. (May be repeated up to a maximum of 18 hours.) Prearranged experiential learning program, to be planned, supervised, and evaluated for credit by faculty and field supervisors. Involves temporary placement with public or private enterprise for professional competence development.

IENG 493. Special Topics. 1-6 Hours.
PR: Consent. Investigation of topics not covered in regularly scheduled courses.

IENG 494. Seminar. 1-3 Hours.
PR: Consent. Presentation and discussion of topics of mutual concern to students and faculty.

IENG 495. Independent Study. 1-6 Hours.
Faculty supervised study of topics not available through regular course offerings.

IENG 496. Senior Thesis. 1-3 Hours.
PR: Consent.

IENG 498. Honors. 1-3 Hours.
PR: Student in Honors Program and consent by the honors director. Independent reading, study or research.