Benjamin M. Statler College of Engineering and Mineral Resources

E-mail: statler-info@mail.wvu.edu (statler-info@mail.wvu.edu)

Degrees Offered

- Bachelor of Science in Aerospace Engineering (B.S.A.E.)*
- Bachelor of Science in Biomedical Engineering (B.S.Bm.E.)*
- Bachelor of Science in Biometric Systems Engineering (B.S.B.S.E.)
- Bachelor of Science in Chemical Engineering (B.S.Ch.E.)*
- Bachelor of Science in Civil Engineering (B.S.C.E.)*
- Bachelor of Science in Computer Engineering (B.S.Cp.E.)*
- Bachelor of Science in Computer Science (B.S.C.S.)#
- Bachelor of Science in Cybersecurity (B.S.)
- Bachelor of Science in Electrical Engineering (B.S.E.E.)*
- Bachelor of Science in Industrial Engineering (B.S.I.E.)*
- Bachelor of Science in Mechanical Engineering (B.S.M.E.)*
- Bachelor of Science in Mining Engineering (B.S.Min.E.)*
- Bachelor of Science in Petroleum and Natural Gas Engineering (B.S.P.N.G.E.)*

Dual Degrees Offered

- Aerospace Engineering and Mechanical Engineering
- Biometric Systems Engineering and Computer Engineering
- Biometric Systems Engineering and Electrical Engineering
- Civil Engineering and Mining Engineering
- Computer Engineering and Computer Science
- Computer Engineering and Electrical Engineering
- Mining Engineering and Geology

Nature of Program

The Benjamin M. Statler College of Engineering and Mineral Resources (Statler College) undergraduate degree programs are administered through seven academic departments:

- Chemical and Biomedical Engineering
- Lane Department of Computer Science and Electrical Engineering
- Industrial and Management Systems Engineering
- Mechanical and Aerospace Engineering
- Mining Engineering
- Petroleum and Natural Gas Engineering
- Wadsworth Department of Civil and Environmental Engineering

All undergraduate programs are recognized by industry as providing excellent preparation for the engineering profession. They are planned to give students a balanced background in the basic sciences, engineering sciences, engineering analysis, the humanities, and the social sciences. In addition, each curriculum features creative programs in engineering synthesis and design. This blend of science and practice gives students the tools to solve today’s problems and the background to develop the expertise needed for their future success in the profession. Our graduates enjoy a multitude of career opportunities in our world’s most vital industries.

The Statler College is committed to providing high-quality educational programs for all undergraduate students, so that graduates of the College will:
• Be proficient in their chosen field
• Develop and maintain professional ethics and understand the comprehensive impact of engineering solutions on a diverse, interconnected, and global society
• Continue in their education on a life-long basis through both formal study and self-directed inquiry

The faculty uses modern teaching techniques including programmed material, guest lectures by visiting authorities, team projects, and in-house industrial assignments to provide a breadth of training experiences. Teaching laboratories are equipped with modern instruments, machines, and tools to improve and enrich the student’s understanding of engineering principles and problems. Numerous computer laboratories and facilities are available for classroom work.

College programs are geared to provide graduates with a sound background upon which to enter the industrial workforce or to pursue graduate study in engineering, medicine, law, or business. A number of industries in West Virginia and the region provide meaningful and financially rewarding summer employment for students. These training opportunities often lead to professional positions upon graduation.

Accreditation

ABET accredits college and university programs in the disciplines of applied and natural science, computing, engineering and engineering technology at the associate, bachelor and master degree levels. With ABET accreditation, students, employers and society can be confident that a program meets the quality standards that produce graduates prepared to enter a global workforce.

The Bachelor of Science in Computer Science (B.S.C.S.) is accredited by the Computing Accreditation Commission of ABET, http://www.abet.org.

The Bachelor of Science in Aerospace Engineering (B.S.A.E.), Bachelor of Science in Biomedical Engineering (B.S.Bm.E.), Bachelor of Science in Chemical Engineering (B.S.Ch.E.), Bachelor of Science in Civil Engineering (B.S.C.E.), Bachelor of Science in Computer Engineering (B.S.Cp.E.), Bachelor of Science in Electrical Engineering (B.S.E.E.), Bachelor of Science in Industrial Engineering (B.S.I.E.), Bachelor of Science in Mechanical Engineering (B.S.M.E.), Bachelor of Science in Mining Engineering (B.S.Min.E.), and Bachelor of Science in Petroleum and Natural Gas Engineering (B.S.P.N.G.E.) are accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org.

The Statler College is currently seeking ABET accreditation for the Biometric Systems Engineering and Cybersecurity programs.

Curricula

During the first two years, students acquire fundamental knowledge in mathematics, basic sciences, and introductory engineering topics. Engineering design, computer-based experience, and communication skills are integrated throughout the curriculum. In the third and fourth years, the curriculum builds upon the fundamental engineering concepts toward an integrated educational experience, preparing students to pursue a successful professional career and life-long learning. Technical electives allow students to develop depth in a specialty area or breadth among several fields. Study in the humanities and social sciences play an integral part of our programs, enabling students to understand and appreciate the technological, social, and cultural changes that challenge the world and providing the context of our ethical and responsible duties to society.

Time to Completion of Degree

All undergraduate, single degree programs in the college are structured so that they can be completed in eight semesters of full-time study if a student starts in Calculus I (MATH 155).

Degree Requirements

To be eligible to receive a bachelor’s degree, a student is required to complete satisfactorily the number of semester hours of work as specified in the program curriculum. Students must achieve a minimum grade point average of 2.25 for all courses taken at WVU, a major grade point average of 2.25 or better in courses completed within the student’s major, and a minimum overall grade point average of 2.25. A maximum of one math or science course with a grade of D+, D, or D- may apply toward a Statler College degree. All course attempts are included in the major GPA calculation according to university policy.

Graduating students are expected to complete a survey regarding their academic and professional experiences at WVU, as well as post-graduation job placement or continuing education plans.

Cooperative (Co-op) Education and Internship Programs

The co-op opportunity is available to any student with a minimum 2.25 GPA interested in pursuing a degree in any major offered by the Statler College. The professional development experience combines practical on-the-job experience with the classroom education of a four-year engineering curriculum. Co-ops are arranged with an employer for various work periods and may involve one or more academic semesters and/or summer terms. Internships are professional work experiences which generally occur during summer terms. Participation in internships, co-ops, or both is strongly recommended of all Statler College students.
Learning Abroad Programs

Students are strongly encouraged to prepare for their careers through learning abroad. The college participates in numerous international exchange programs for undergraduates, as well as the International Student Exchange Program (ISEP) managed through the WVU Education Abroad Office. There are short-term classes led by WVU faculty, semester and year-long exchange programs, study abroad programs, and service learning opportunities via Engineers Without Borders. The college strongly encourages students to participate in these unique study abroad opportunities. Individual program details vary, but in general, provide Statler College students the opportunity to take part in a study abroad experience that may be for a summer, semester, or full academic year taking courses that count toward their degree so graduation need not be delayed. Students are encouraged to visit the WVU Education Abroad website for more detailed information.

ADMINISTRATION

DEAN

• Pedro J. Mago - Ph.D. (University of Florida)

ASSOCIATE DEAN FOR ACADEMICS AND STUDENT PERFORMANCE

• Robin S. Hissam - Ph.D. (University of Delaware)

ASSOCIATE DEAN OF RESEARCH

• Xingbo Liu - Ph.D. (University of Science & Technology, Beijing)

ASSOCIATE DEAN FOR STUDENT, FACULTY, AND STAFF ENGAGEMENT

• Cerasela Zoica Dinu - Ph.D. (Dresden University of Technology, Germany)

ASSISTANT DEAN FOR ADMINISTRATION

• R. Jason Dean - M.A. (West Virginia University)

Learning Outcomes for Degree Designations

Each degree offered in the Statler College has designated learning outcomes which students should achieve through the respective programs.

BACHELOR OF SCIENCE IN AEROSPACE ENGINEERING (BSAE)

Upon graduation, all Bachelor of Science students in Aerospace Engineering will have the:

1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
3. an ability to communicate effectively with a range of audiences
4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

BACHELOR OF SCIENCE IN BIOMEDICAL ENGINEERING (BSBME)

Upon graduation, all Bachelors of Science students in Biomedical Engineering will have:

1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
3. an ability to communicate effectively with a range of audiences
4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.
BACHELOR OF SCIENCE IN BIOMETRIC SYSTEMS ENGINEERING (BSBSE)

Upon graduation, all Bachelor of Science students in Biometric Systems Engineering will have:

1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
3. an ability to communicate effectively with a range of audiences
4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

BACHELOR OF SCIENCE IN CHEMICAL ENGINEERING (BSCHE)

Upon graduation, all Bachelor of Science students in Chemical Engineering will:

1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
3. an ability to communicate effectively with a range of audiences
4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

BACHELOR OF SCIENCE IN CIVIL ENGINEERING (BSCE)

Upon graduation, all Bachelor of Science students in Civil Engineering will have:

1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
3. an ability to communicate effectively with a range of audiences
4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

BACHELOR OF SCIENCE IN COMPUTER ENGINEERING (BSCPE)

Upon graduation, all Bachelor of Science students in Computer Engineering will have:

1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
3. an ability to communicate effectively with a range of audiences
4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.
BACHELOR OF SCIENCE IN COMPUTER SCIENCE (BSCS)
Upon graduation, all Bachelor of Science students in Computer Science will have an ability to:

1. Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions.
2. Design, implement, and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program’s discipline.
3. Communicate effectively in a variety of professional contexts.
4. Recognize professional responsibilities and make informed judgments in computing practice based on legal and ethical principles.
5. Function effectively as a member or leader of a team engaged in activities appropriate to the program’s discipline.
6. Apply computer science theory and software development fundamentals to produce computing-based solutions.

BACHELOR OF SCIENCE IN CYBERSECURITY (BS)
Upon graduation, all Bachelor of Science students in Cybersecurity will be able to:

1. Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions.
2. Design, implement, and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program’s discipline.
3. Communicate effectively in a variety of professional contexts.
4. Recognize professional responsibilities and make informed judgments in computing practice based on legal and ethical principles.
5. Function effectively as a member or leader of a team engaged in activities appropriate to the program’s discipline.
6. Apply security principles and practices to maintain operations in the presence of risks and threats.

BACHELOR OF SCIENCE IN ELECTRICAL ENGINEERING (BSEE)
Upon graduation, all Bachelor of Science students in Electrical Engineering will have:

1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
3. an ability to communicate effectively with a range of audiences
4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

BACHELOR OF SCIENCE IN INDUSTRIAL ENGINEERING (BSIE)
Upon graduation, all Bachelor of Science students in Industrial Engineering will have acquired the:

1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
3. an ability to communicate effectively with a range of audiences
4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING (BSME)
Upon graduation, all Bachelor of Science students in Mechanical Engineering will have:

1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
3. an ability to communicate effectively with a range of audiences
4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

BACHELOR OF SCIENCE IN MINING ENGINEERING (BSMINE)

Upon graduation, all Bachelor of Science students in Mining Engineering will:

1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
3. an ability to communicate effectively with a range of audiences
4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

BACHELOR OF SCIENCE IN PETROLEUM AND NATURAL GAS ENGINEERING (BSPNGE)

Upon graduation, all Bachelor of Science students in Petroleum and Natural Gas Engineering will have:

1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
3. an ability to communicate effectively with a range of audiences
4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Admissions

Statler College admission is based on high school grade point average and math placement. Students must also meet all other WVU admission requirements (https://admissions.wvu.edu/). Once admitted, students work with their academic advisor to create their degree plan and semester schedules based on initial math placement and specific degree requirements. Each degree plan is tailored to the level of academic preparation of the student to maximize the opportunity for success while meeting the requirements to move into their intended engineering or computing discipline major.

FRESHMAN ADMISSIONS

Students with Standardized Test Scores

Incoming students with standardized test scores will be admitted based on their math readiness. Any student who meets the WVU Math Department’s entry requirements to College Algebra (MATH 126) will be admitted to the Statler College as an engineering student no matter their intended engineering or computer science major. Students will matriculate to the discipline of their choice once they complete a set of required classes with a C- or better, and maintain a minimum 2.25 GPA.

Students with standardized test scores that do not meet the entry requirements to College Algebra (MATH 126) by their first semester, will start in the Center for Learning, Advising and Student Success and will be eligible to be admitted into the Statler College once they are ready to start in calculus (MATH 153 or 155) and have a minimum 2.50 GPA.

Students without Standardized Test Scores

Incoming students who do not have standardized test scores will be considered for admission if they have a 3.50 cumulative high school GPA. A minimum ALEKS score of 65 is recommended for the timely completion of the degree. Students must have a placement into a Math course to receive a complete schedule for their first semester.
TRANSFER STUDENTS

Transferring from outside WVU

Incoming transfer students will be admitted to the Statler College based on their math readiness. Any student who meets the WVU Math Department’s requirements of starting in Calculus I (MATH 153 or 155) and has a cumulative 2.75 GPA or higher will be admitted as Engineering students no matter their intended engineering or computing major. Students will matriculate to the discipline of their choice once they complete a set of required classes with a C- or better, and maintain a minimum 2.25 GPA. Students who have sophomore status and have completed at least Calculus I (MATH 153 or 155) and a lab science may also be considered for direct admission into their major.

Any student transferring in with less than 24 credit hours and who do not meet the above transfer criteria will be evaluated based on the freshman admission criteria.

Transferring from within WVU

Students who started in any non-Statler College major may transfer once they meet the WVU Math Department’s requirements of starting in Calculus I (MATH 153 or 155) and has a cumulative 2.50 GPA or higher will be admitted as Engineering students no matter their intended engineering or computing major. Students will matriculate to the discipline of their choice once they complete a set of required classes with a C- or better, and maintain a minimum 2.25 GPA.

Any student transferring in with less than 24 credit hours and who do not meet the above transfer criteria will be evaluated based on the freshman admission criteria.

MATRICULATION INTO SPECIFIC ENGINEERING OR COMPUTING MAJORS

Engineering Degrees

Students can matriculate into the engineering discipline of their choice once they have successfully completed the following classes with a C- or better, and have a cumulative 2.25 GPA.

- MATH 154 or 155
- CHEM 115 and 115L*
- ENGL 101 or 103
- ENGR 101
- ENGR 102
- ENGR 191

Computing Degrees

Students can matriculate to the computing discipline of their choice (computer science or cybersecurity) once they have successfully completed the following classes with a C- or better, and have a cumulative 2.25 GPA.

- CS 110
- MATH 154 or 155
- ENGL 101 or 103
- ENGR 101
- ENGR 191
- One of the following lab science sequences
 - BIOL 115 and 115L, CHEM 115 and 115L, CHEM 117 and 117L, PHYS 111, or GEOL 101 and 102

Early Matriculation into Major

Freshman students with initial placement into Calculus I (MATH 155) or higher can be eligible to move into the engineering or computing discipline of their choice early based on the following criteria

- Students who have at least 7 AP credits with at least 4 of those credits including CHEM 115 and 115L, PHYS 111 and 111L, or PHYS 112 and 112L; pass all their first semester math and science classes with at least a C-; and have a cumulative 3.50 or higher GPA

Or

- Students who pass all their first semester math and science courses with at least a C-; and have a cumulative 3.50 or higher GPA.

ADMISSIONS REQUIREMENTS 2022-2023

The Admissions Requirements above will be the same for the 2022-2023 Academic Year.
Certificate Programs

- Biomedical Engineering (http://catalog.wvu.edu/undergraduate/undergraduatecertificate/biomedicalengineering/)
- Global Competency (http://catalog.wvu.edu/undergraduate/undergraduatecertificate/globalcompetency/)

Benjamin M. Statler College of Engineering and Mineral Resources Minors

- Biomedical Engineering (http://catalog.wvu.edu/undergraduate/minors/biomedicalengineering/)
- Chemical Engineering (http://catalog.wvu.edu/undergraduate/minors/chemical_engineering/)
- Computer Science (http://catalog.wvu.edu/undergraduate/minors/cs/)
- Cybersecurity (http://catalog.wvu.edu/undergraduate/minors/cybersecurity/)
- Engineering in Society (http://catalog.wvu.edu/undergraduate/minors/engineeringinsociety/)

Procedures and Guiding Principles for Handling Transfer/Transient Credit

The Statler College strives to manage student transfer/transient credits in a fair, consistent, and uniform manner relative to students in the College who do not seek transfer/transient course credit and to exercise due diligence with meeting ABET prerequisite and curricular requirements for transfer credit. The College has adopted the following procedures/guiding principles to deal with transfer/transient credit issues.

CREDIT TRANSFER PROCEDURE

Chemistry, engineering, geology, math, or physics courses transferred to WVU for consideration of academic credit in the Statler College will be transferred as “Open Credit” (e.g., MATH 000, NOEQ, 1TC, 2TC, etc). The “open credit” will be reviewed to determine if it meets the academic requirements of the College and if so, processed by a course substitution action. The only exceptions to this policy will be if a student is transferring into the College:

- Advanced Placement Program (AP) credit
- International Baccalaureate (IB) credit
- College Level Examination Program (CLEP) credit
- Credit based on an approved Transient Approval Form by the dean or his designee before the course was taken
- Credit from a college or university with which Statler College has an approved articulation agreement
- Credit from a college or university listed in the University's Transfer Credit Database as directly equivalent to coursework at WVU

GUIDELINES FOR COLLEGE APPROVAL OF REQUESTS FOR TRANSIENT COURSE CREDIT

Students may request up to nine (9) credits of coursework to be taken in transient for use toward the degree requirements, defined to include mathematics, science, and Statler College courses. Students may request up to eighteen (18) credits of coursework in total, which includes English, Economics, general education elective courses, and free electives. For a request to take required course in transient, the student must present sufficient evidence that a course requested to be taken in transient is equivalent to the specified WVU course and allow for ample time for review.

An Undergraduate Transient Application will typically be approved if:

- The student has met the rank, prerequisite/co-requisite courses, etc., to take the course at WVU
- The prerequisite courses have been completed with a minimum grade of C- or better
- The requested course has the same number of credit hours and pre or co-requisites as the WVU course or has otherwise been deemed academically equivalent by Statler College

An Undergraduate Transient Application will not be approved if:

- The student has previously earned a D, F, or W in the equivalent course at WVU
- The student is currently enrolled at WVU to take coursework in the same term/semester in which they are applying to be a transient student at another institution.

Meeting the guidelines for a transient application does not guarantee approval of the transient application. The associate dean for academic affairs has the right to set conditions more stringent than those set forth in these guidelines, as well as the right to limit transient course credit. Transient requests for summer session will be reviewed after April 1.

COURSES TAKEN BY LEARNING ABROAD

Courses taken on an approved learning abroad experience are exempt from the 9/18 credit limit of transient work. Students are encouraged to work with the Statler College Advising Center to develop an appropriate course plan in advance of the learning abroad experience. Courses should be reviewed for content and suitability for a reasonable course substitution to meet program requirements.
COURSE SUBSTITUTION APPROVAL PROCESS

A course designated as "open credit" can be petitioned for specific course credit through the established course substitution approval process. The student must present sufficient evidence that the course is equivalent to the specified WVU course. A course syllabus and transcript showing the student's grade in that course must be presented with the application for the course to be reviewed to determine equivalency. Since this review process may take significant time to complete, credit for courses presented for review within two weeks of the beginning of a semester may not be awarded credit in time for the student to register for a subsequent course for which the transfer course is a prerequisite. To be approved to apply toward a Statler College degree, courses taken must have an earned grade of C- or better.

For external transfer students that are sophomore level or above, have earned a C- or better in CHEM 115, MATH 155, MATH 156, and PHYS 111, and have completed at least three credit hours in a discipline specific course, then they may request to take an approved elective (or approved transfer credit) as a substitute for either ENGR 101 or 102 or the combination.

Smart Device Policy

The use of programmable calculators or smart devices (including smart-phones, smart watches, tablets, cameras, wearable devices, etc.) on exams and quizzes prohibited unless specifically indicated by the instructor. Students are expected to have webcams for their laptops or desktop computers.

Sanction Policy for Academic Integrity Offenses

Graduates of the Statler College have the obligation to serve humanity with integrity, fairness, tolerance, and respect. Computing and engineering professionals are held to the highest standard of conduct. Academic integrity is fundamental to meeting this obligation and standard of conduct.

1. Cheating or plagiarism on minor course element (e.g., quiz, weekly lab report, homework as specified in the syllabus). The instructor reports academic dishonesty and assigns a grade of zero on the entire minor course element, and may reduce the course grade by one full letter grade. The student may receive an education supplement from the Office of Student Conduct and may face possible dismissal from Statler College if there are previous major or repeated minor offenses.

2. Cheating or plagiarism on a major course element (e.g., exam, project). The instructor reports academic dishonesty and assigns a grade of zero on the entire major course element, and may reduce the course grade to F, recommend a UF, and/or recommend the student be excluded from further participation in the course. The student may receive an education supplement from the Office of Student Conduct, dismissal from Statler College and/or recommendation for suspension or expulsion from WVU for a second AI offense.

3. Collusion on major course element. The instructor reports academic dishonesty and assigns a course grade of F, recommends a UF, and recommend the student be excluded from further participation in the course. The student will be recommended for dismissal from Statler College and expulsion from WVU.

4. Other (document alteration, tampering with records, and cases outside of cases 1-3). The instructor reports academic dishonesty and assigns a grade of zero on the course element (if applicable), and may impose a further grade reduction, recommend a UF, and/or recommend the student be excluded from further participation in the course. The student may receive an education supplement from the Office of Student Conduct, dismissal from Statler College and/or recommendation for suspension or expulsion from WVU for a second AI offense.

Student conduct violations can also be considered in dismissal cases. Dismissal from Statler College for academic integrity offenses is permanent.

Probation, Dismissal and Readmission Policy

UNIVERSITY PROBATION AND SUSPENSION

Students with a cumulative grade point average below 2.00 in all University coursework will be subject to probation and suspension by the University. Please refer to the Undergraduate Academic Probation and Suspension Policy found in the Undergraduate Information section of this catalog for further information on WVU probation and suspension.

MINIMUM STATLER ACADEMIC STANDARDS

The Statler College has established academic standards to ensure the quality of our programs, and to make sure students are making adequate progress towards their degree.

- A maximum of one math or science course with a grade of D+, D, or D- may apply toward a Statler College degree.
- The maximum DFW allowance for coursework is 40% of credit hours attempted to be applied to the degree.
- Students must maintain minimum GPAs (Statler, WVU, and overall or cumulative) of 2.25

The Statler GPA is computed based on all work taken at WVU with a subject code within Statler College (BIOM, BMEG, CE, CHE, CPE, CS, CSEE, CYBE, EE, ENGR, IENG, IH&S, MAE, MINE, PDA, PNGE, SAFM, SENG) excluding ENGR 140, ENGR 150, and CS 101. The WVU GPA is computed based on all work taken at WVU. The Overall or cumulative GPA is computed based on all work taken at WVU and transfer work.

Students who fail to meet any of the above standards are not eligible for continuation in the program or graduation.
In addition, the Statler College reviews performance in engineering and computer science specific courses referenced as Statler GPA. Students who fail to meet the minimum requirements shown in the chart below are eligible for academic warning or dismissal.

<table>
<thead>
<tr>
<th>Total Hours Attempted*</th>
<th>Minimum cumulative GPA*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 9</td>
<td>N/A</td>
</tr>
<tr>
<td>10 to 19</td>
<td>2.00</td>
</tr>
<tr>
<td>20 to 29</td>
<td>2.10</td>
</tr>
<tr>
<td>30 to 39</td>
<td>2.20</td>
</tr>
<tr>
<td>40 and more</td>
<td>2.25</td>
</tr>
</tbody>
</table>

* The above table is based on the Statler College credit hours and GPA. Total hours attempted include courses with a grade of W.

STATLER COLLEGE ACADEMIC WARNING

Students that fail to meet the minimum Statler College GPA will receive an electronic notice of academic warning. Students on academic warning must complete a contract prior to the first day of classes each term they are on academic warning. Failure to complete the contract at the beginning of each term while on warning can result in dismissal from the Statler College. Students may remain on academic warning for up to one continuous calendar year after which they are eligible for dismissal. Students may only be placed on academic warning once.

STATLER COLLEGE DISMISSAL POLICY

Students become eligible for dismissal if they are on academic warning for more than one continuous calendar year, fail to meet the requirements of their academic contract, or fail to complete an academic contract while on academic warning. Dismissal decisions are made at the end of each spring term and enforced for at least a minimum of one semester. While dismissed, students will not be able to register for any Statler College specific courses. A student who has been dismissed for academic performance must petition to be readmitted to the Statler College; the decision to readmit will be on a case-by-case basis and is not guaranteed. A student who has preregistered for classes and is subsequently dismissed shall have their registration in Statler College courses automatically canceled. Dismissal from Statler College due to academic integrity offenses is a permanent dismissal.

If a student is readmitted to the Statler College and subsequently dismissed a second time, they may not return to the Statler College. A student who has been dismissed from the Statler College, including from the Fundamentals of Engineering program, cannot transfer academic major course work taken at another institution, during the period of dismissal, for credit toward meeting their degree requirements.

Graduation Requirements

To be eligible to receive a bachelor’s degree, a student is required to complete satisfactorily the number of semester hours of work as specified in the program curriculum. Students must achieve a minimum GPA of 2.25 for all courses taken at WVU, a Statler GPA of 2.25, and a cumulative GPA average of 2.25. A maximum of one math or science course with a grade of D+, D, or D- may apply toward a Statler College degree. All course attempts are included in the major GPA calculation according to university policy.

Graduating students are expected to complete a survey regarding their academic and professional experiences at WVU, as well as post-graduation job placement or continuing education plans.

Accreditation

The Computer Science program is accredited by the Computing Accreditation Committee (CAC) of ABET, http://www.abet.org.

The following programs within the Benjamin M. Statler College of Engineering and Mineral Resources are accredited by the Engineering Accreditation Commission (EAC) of ABET, https://www.abet.org.

- Aerospace Engineering
- Biomedical Engineering
- Chemical Engineering
- Civil Engineering
- Computer Engineering
- Electrical Engineering
- Industrial Engineering
- Mechanical Engineering
- Mining Engineering
- Petroleum & Natural Gas Engineering
The Biometric Systems Engineering and Cybersecurity programs are not accredited. The Statler College intends to seek accreditation of these programs.