Department of Mechanical and Aerospace Engineering

Degrees Offered

- Masters of Science, Aerospace Engineering (M.S.A.E.)
- Masters of Science, Mechanical Engineering (M.S.M.E.)
- Masters of Science, Materials Science and Engineering (M.S.M.S.E)
- Masters of Science, Engineering (M.S.E.)
- Doctor of Philosophy, Aerospace Engineering (Ph.D.)
- Doctor of Philosophy, Mechanical Engineering (Ph.D.)
- Doctor of Philosophy, Materials Science and Engineering (Ph.D.)

Faculty

Faculty members in the department have extensive research, industrial, and teaching experience and have published widely. Their combined experience helps them assist students in selecting relevant courses and research topics to meet their educational goals. The Department has excellent laboratory facilities in the Engineering Sciences Building, the Engineering Research Building, and the new Advanced Engineering Research Building to provide support for both instructional and research activities. The Department has several special purpose laboratories located nearby, which include the Engine Research Center, the Advanced Combustion Laboratory, and the wind tunnel laboratory in the hangar at the Morgantown Municipal Airport (Hart Field). Funded research allows the Department to maintain up-to-date facilities that include modern instrumentation and computing and lab equipment, including simulation and computer-controlled data acquisition systems.

Educational Objectives of Graduate Programs

The objectives of the departmental graduate-level programs are as follows:

1. To provide high quality advanced master-level and Ph.D. level education to graduate engineering students to enable successful careers in technology development, innovation and research, with depth and breadth in one or several areas of the engineering discipline.
2. To develop the capacity of graduates to conduct independent research and/or technology development and innovation, through original contributions to the engineering discipline and to disseminate the results of their scholarly work.
3. To instill in graduates the drive for leadership in technology development, innovation and research and to contribute to the advancement of the profession in a societal and economic context.

Four master's degrees are offered in the department: master's of science in aerospace engineering (M.S.A.E.), master's of science in mechanical engineering (M.S.M.E.), master's of science in materials science and engineering (M.S.M.S.E.), and master's of science in engineering (M.S.E.) with a major in mechanical engineering or aerospace engineering. The department also offers the doctor of philosophy (Ph.D.) degree with majors in mechanical engineering, in aerospace engineering and in materials science and engineering.

Courses

Only courses with grades of C- or higher are acceptable for graduate credit, although all coursework taken will be counted in establishing the student’s grade point average. No more than nine hours of 400-level credit can be counted toward meeting the coursework requirements for the M.S. degree. Only 400-level courses that are approved for math credit (see the following section) and only 400-level courses approved as technical electives for the B.S. degree in an engineering discipline are acceptable for course credit towards the M.S. degree. The technical elective(s) must not have been used to satisfy the B.S. degree. The absolute minimum requirement set by the department for coursework credit towards a Ph.D. degree is eighteen hours beyond the master’s degree at the 500-level or higher taken at WVU. However, the actual minimum number of coursework credits is set by the student’s advisory and examining committee and is based on the student’s background and the area of his/her Ph.D. dissertation. No more than twenty percent of the coursework beyond the minimum of eighteen credit hours required by the college for a doctoral degree can be at the 400-level. A minimum of twenty-four semester hours of research credit at the Ph.D.-level is required to meet dissertation requirements. Two consecutive semesters of full-time attendance at the WVU campus in Morgantown are necessary to meet the residency requirements of the Ph.D. program.

Math Requirements

The Department requires that the graduate coursework include six hours of advanced mathematics for the M.S. programs of study and a minimum of six additional hours of mathematics for the Ph.D. programs. A list of mathematics courses approved for graduate credit for M.S. students and a list for Ph.D. students can be obtained from the graduate program director of the Department.
Time Limitations

All the requirements for thesis based master's degrees (M.S.A.E., M.S.M.E. and M.S.M.S.&E.) in the MAE Department must be completed within eight years preceding the student's graduation. All students in these programs are required to engage in research, and complete and defend successfully a master's thesis. They must identify a subject for their thesis research, form a three-member advisory and examining committee (AEC), and file a plan of study by the end of their first semester of enrollment in the graduate program. Students must pass a final examination administered by their advisory and examining committee before being certified for the degree.

All requirements for the Ph.D. program must be completed within eight years preceding the student’s graduation. All students pursuing the Ph.D. program must take and pass the Ph.D. Qualifier Examination within the first two semesters in the program. A second and final attempt to pass the Ph.D. qualifier can be offered no later than the third semester. Students should identify a subject for their Ph.D. dissertation research, form a five-member advisory and examining committee, and file a plan of study by the end of their third semester of enrollment in the program. A minimum of eighteen credit hours of coursework with a minimum GPA of 3.3/4.0 and twenty-four credit hours of dissertation research are required for the Ph.D. degree. All Ph.D. students enrolled in their Ph.D. program on or after May 2016 must document that they have submitted a journal paper manuscript to an archival journal or have submitted a patent disclosure, prior to scheduling their dissertation defense. After the Ph.D. qualifying examination requirement and publication requirement are satisfied, students are required to produce and successfully defend a Research Proposal before the advisory and examining committee to attain Ph.D. candidacy. After at least one full semester of the Ph.D. proposal defense, candidates must produce and successfully defend a Ph.D. dissertation.

Focus Areas

Graduate courses in the MAE department are organized under six academic areas: fluids and aerodynamics, solid mechanics and structures, design and controls, thermal sciences, bioengineering, and materials science and engineering. Students who are pursuing an advanced degree in either mechanical or aerospace engineering and in materials science and engineering may perform their thesis or dissertation research and specialize in any one of these areas.

FLUID MECHANICS AND AERODYNAMICS

A variety of courses and facilities support graduate research in aerodynamics and fluid mechanics. Laboratories are located in college buildings and remote sites. Flow facilities include instrumented subsonic and supersonic wind tunnels, and several flow loops mainly used for research in gas-solid and density stratified flows. Available instrumentation includes eight channels of hot wire/film anemometry, two single-component and one three-component, laser Doppler velocimeter (LDV) systems, and a particle image velocimeter (PIV) system. The department owns two flight simulation facilities, one that simulates translational and rotational motion in six degrees of freedom, and the other that relies on D-six software to provide “joystick only” flight simulation. Furthermore, the department built and operates different types of Unmanned Airborne Vehicles (UAV’s), as well as experimental aircraft and airborne systems that are housed in a hangar owned by the department at the Hart Field municipal airport in Morgantown. A significant portion of the current activity involves numerical solutions to flow problems and is supported by a computing facility dedicated to graduate research.

Although the faculty background and interests in the areas of aerodynamics and fluid mechanics are broad, recent research has been concentrated on applications of computational fluid dynamics (CFD) to investigate a wide variety of problems in fuel cell technology, fixed wing and rotorcraft aerodynamics, bioengineering, and combustion. The department’s faculty have accumulated extensive research experience in multiphase and density-stratified flows, low-speed aerodynamics, shock phenomena in two-phase systems, flow in microgravity, boundary layer control, and high-speed aerodynamics. Previous and current research areas include topics such as fluidized bed combustion, aerosol sampling, flow metering, flow distribution systems, numerical solutions to gas-solid flows, and fluid-particle turbulence interactions, including deposition on solid surfaces. The low-speed aerodynamics work is related to the design of vertical axis wind turbines and STOL airfoils.

SOLID MECHANICS AND DESIGN

The solid mechanics and design area encompasses the theoretical, numerical, and experimental study of solid bodies, from concentration on local behavior of deformable bodies to the global response of structural elements. Hence, students may explore the mechanical behavior of materials in the neighborhood of micro-scale defects such as cracks, or investigate the behavior of large-scale bodies such as aerospace structures.

The faculty members specialized in this area carry out basic and applied research using state-of-the-art computational and experimental techniques. The areas of research include advanced metal alloys and composite materials, lightweight structures, safety and durability enhancements, real time monitoring and diagnosis of structural systems, aero elasticity, fracture mechanics, nonlinear dynamics and vibrations, biomechanics; and computational methods and experimental techniques, including optical and ultrasound methods. Furthermore, in cooperation with the Department of Civil and Environmental Engineering, MAE graduate students may pursue studies related to civil engineering. A large array of research facilities includes laboratories (materials, structures, vibrations, photo mechanics, biomechanics, fracture mechanics), computers (work stations, personal computers, computer-aided engineering), and mechanical and electronic shops.

DYNAMICS AND CONTROLS

The dynamics and controls area offers instructional and research opportunities for students who seek to attain the expertise required to control the behavior of an engineering system in a dynamic environment. Instructional offerings equip the students with a foundation for developing prototype systems and for improving the performance of existing systems. Selected examples of research areas include flight simulation and controls, automatic
controls, advanced instrumentation, microprocessor applications and non-destructive testing; elastodynamic analysis, computer-aided design (CAD); and modeling, design, and analysis of energy management systems.

THERMAL SCIENCES AND SYSTEMS

The thermal sciences and systems area encompasses the fields of thermodynamics, combustion, heat transfer, and power and energy systems. Graduate course offerings cover a wide range of topics in this area with applications to both aerospace and mechanical engineering problems. Recent research efforts include topics such as alternative fuels testing, internal combustion engine performance and emissions, fuel cell technology, heat transfer, numerical analysis of thermal systems, the analysis of fluidized bed combustion, energy analysis of buildings, oscillating jet combustion, deposition on turbine blades, and reactor design.

Research facilities include a state-of-the-art engine research laboratory, three transportable emissions research laboratories, thermal analyzers, recording thermocouple data-acquisition systems, high-altitude simulation chamber for ablation and wear studies, a fluidized bed combustion laboratory, an electrically-heated, natural convection water facility, Schlieren systems for flows with varying density, and a water reservoir for thermal stratification studies.

BIOENGINEERING

Areas of research specialization related to bioengineering include ultrasound technology for imaging of body tissues and organs, respiratory and diseased tissue mechanics, orthopedic mechanics, bone growth and fracture, and the application to rehabilitation of computer-aided design and microprocessor-based instrumentation. Research facilities include a state-of-the-art ultrasound imaging laboratory, an aerosol inhalation exposure system, laser-based holographic and moire interferometric equipment, a lung acoustic impedance measurement system; and modern orthopedic, rehabilitation, and computer research laboratories.

MATERIALS SCIENCE AND ENGINEERING

The material science and engineering area allows for the study of processing, structure, and properties of materials for structural, functional, and device applications. Areas of research emphasized within this area include advanced microscopy, composite materials, materials for fuel cells, smart materials, super alloys, facilities incorporating electron microscopy, scanning probe microscopy, electro-chemical characterization, thermal analysis, and mechanical testing facilities.

FACULTY

CHAIR
- Jason Gross - Ph.D. (West Virginia University)
 Unmanned Aerial Vehicles, Avionic Systems, Flight Testing

PROFESSORS
- Xueyan Song - Ph.D. (Zhejiang University, China)
 Materials Science, Electron Microscopy
- V'yacheslav Akkerman - Ph.D. (Umeå University, Sweden)
 Turbulent Combustion, Flame Tribalization
- Ever J. Barbero - Ph.D. (Virginia Polytechnic Institute and State University)
 Materials, Experimental and Computational Mechanics
- Wade W. Huebsch - Ph.D. (Iowa State University)
 Fluid Mechanics, CFD, Numerical Methods
- Bruce S. Kang - Ph.D. (University of Washington)
 Experimental Mechanics, Advanced Materials
- John M. Kuhlman - Ph.D. (Case Western Reserve University)
 Fluid Mechanics
- Hailin Li - Ph.D. (University of Calgary, Canada)
 Combustion, Emissions, Fuel Efficiency of Vehicles and IC Engines
- Xingbo Liu - Ph.D. (University of Science and Technology of China, Beijing)
 Materials Science
- Pedro J. Mago - Ph.D. (University of Florida)
 Heat and power systems, building energy simulation, and waste heat recovery technologies
- Victor H. Mucino - Dr.Eng., P.E. (University of Wisconsin-Milwaukee)
 Mechanical Engineering Design, CAD, Finite Element Analysis
- Marcello R. Napolitano - Ph.D. (Oklahoma State University)
 Aircraft Stability and Control, Feedback Control, Unmanned Airborne Vehicles (UAVs)
- Mario Perhinschi - Ph. D. (University of Bucharest, Romania)
Flight Modeling and Simulation
• Songgang Qiu - Ph. D. (University of Minnesota)
 Thermodynamics, Heat Transfer
• Edward M. Sabolsky - Ph.D. (The Pennsylvania State University)
 Materials, Ceramic Science
• Nithi T. Sivaneri - Ph.D. (Stanford University)
 Structural Mechanics, Composite Materials, FEM, Numerical Methods

ASSOCIATE PROFESSORS
• Omid Askari - Ph.D. (Northeastern University)
 Engines, Gas Turbines, Alternate Fuels
• Cosmin E. Dumitrescu - Ph.D. (University of Alabama)
 Combustion, Alternate Fuels, IC Engines
• Jason N. Gross - Ph.D. (West Virginia University)
 Unmanned Aerial Vehicles, Avionic Systems, Flight Testing
• Yu Gu - Ph.D. (West Virginia University)
 Robotic Systems, Sensor Fusion
• Derek Johnson - Ph.D. P. E. (West Virginia University)
 Alternative Fuels, Engines and Emissions
• David S. Mebane - Ph.D. (Georgia Institute of Technology)
 Fuel Cells, Multi Scale Simulation of Chemical and Electrochemical Systems
• Osama Mukdadi - Ph.D. (University of Colorado)
 Bioengineering, Acoustics, Solid Mechanics and Materials
• Terence D. Musho - Ph.D. P.E. (Vanderbilt University)
 Nanoscale Thermal and Electrical Transport, Direct Energy Conversion
• Andrew C. Nix - Ph.D. (Virginia Polytechnic Institute and State University)
 Turbines, Engines and Emissions
• Guilherme Augusto Silva Pereira - Ph.D. (Federal University of Minas Gerais)
 Field Robotics, Autonomous Vehicles
• Loren Rieth - Ph.D. (University of Florida)
 Microelectrode Implants, Electrical & Neural Prosthesis
• Konstantinos Sierros - Ph.D. (University of Birmingham, U. K.)
 Flexible Optoelectronic Devices, Tribology, Materials for Renewable Energy
• Arvind Thiruvengadam - Ph.D. (West Virginia University)
 Emissions of Heavy-Duty Internal Combustion Engines
• Gregory J. Thompson - Ph.D. (West Virginia University)
 Thermodynamics, Machine Design
• W. Scott Wayne - Ph.D. (West Virginia University)
 Machine Design, Alternative Fuels

ASSISTANT PROFESSORS
• Xi Yu - Ph.D. (Boston University)
 Robotics
• Piyush M. Mehta - Ph.D. (University of Kansas)
 Astrodynamics, Space Situational Awareness
• Nicholas Szczecinski - Ph.D. (Case Western Reserve University)
 Robotics

TEACHING ASSOCIATE PROFESSOR
• Patrick H. Browning - Ph.D. (West Virginia University)
 Aerodynamics, Aircraft Design

TEACHING ASSISTANT PROFESSORS
• Christopher Griffin - Ph.D. (West Virginia University)
 Aerodynamics, Fluid Mechanics
• Andrew P. Rhodes - Ph.D. (West Virginia University)
 Aerospace Dynamics and Propulsion
• Emily Spayde - Ph.D. (Mississippi State University)
 Engineering education, energy sustainability and organic Rankine cycles

RESEARCH ASSOCIATE PROFESSORS
• Yun Chen - Ph.D. (Universidade Tecnica de Lisboa)
 Material Science, Metal Hydrides, Cathode Material Development
• Eduardo Sosa - Ph. D. (University of Puerto Rico)
 Thin Wall Structures

RESEARCH ASSISTANT PROFESSORS
• Ali Baheri - (University of North Carolina at Charlotte)
 Machine Learning, Autonomous Driving
• Shanshan Hu - Ph.D. (West Virginia University)
 high temperature corrosion, molten salt, anti-corrosion coating and electrophoretic deposition
• Wei Li - Ph.D. (Graduate University of Chinese Academy of Sciences)

VISITING AND ADJUNCT PROFESSORS
• Alberto Ayala - Ph.D. (University of California, Davis)
 Energy, Engine Emissions
• Dureid Azzouz - Ph.D. (University of Southampton, U.K.)
 Fluid Mechanics
• Albert Boretti - Ph.D. (University of Florence, Italy)
 Innovative Combustion Engines
• Mark Bright - Ph.D. (West Virginia University)
 Materials Engineering, Pyrotech Inc.
• Darran Cairns - Ph.D. (University of Birmingham, U.K.)
 Materials Science
• Weigiang Ding - Ph.D. (Northwestern University)
 Nanostructures
• Renguang Dong - Ph.D. (Concordia University)
 Biomechanics, Human Vibrations, NIOSH
• Mridul Gautam - Ph.D. (West Virginia University)
 Alternate Fuels, Engine and Emissions, VP for Research UNR
• Luis A. Godoy - Ph.D. (University of London, U.K.)
 Structural Stability
• Frank E. Goodwin - Sc.D. (Massachusetts Institute of Technology)
 Materials Engineering, ILZRO
• Valeriya Gritsenko - Ph.D. (University of Alberta, Canada)
 Neuroscience
• Huang Guo - Ph.D. (West Virginia University)
 Electro-Chemistry, Materials Science, Mechanical Engineering
• Srinkath Gururajan - Ph.D. (West Virginia University)
 Small Unmanned Aerial Vehicle Systems
• Nabil S. Hakim - Ph.D. (Wayne State University)
 Alternative Fuels Engines and Emissions
• Yiqun Huang - Ph.D. (University of Texas, Austin)
 Engine Emissions Control
• Paul E. King - Ph.D. (Oregon State University)
 Materials Engineering, NETL
• George Kiriakidis - Ph.D. (Salford University, U.K.)
 Physics, Mechanics
• Stephen Kukureka - Ph.D. (University of Birmingham, U.K.)
 Materials Science
• Andrew D. Lowery - Ph.D. (West Virginia University)
 Control Systems
• Alejandro Lozano-Guzman - Ph.D. (University of New Castle Upon Tyne, U.K.)
 Dynamic Systems (CICATA-IPN Mexico)
MAE 515. Analytical Methods in Engineering. 3 Hours.
PR: Consent. Index notation for determinants, matrices, and quadratic forms; linear vector spaces, linear operators including differential operators; calculus of variations, eigenvalue problems, and boundary value problems.
MAE 516. Computational Methods in Engineering. 3 Hours.
PR: Knowledge of undergraduate-level Statics, Dynamics, Fluid Dynamics, Numerical Analysis, as well as MATLAB or any other basic programming language such as C++ or Python. Students will be introduced to essential concepts in computational methods; functional approximations, system of nonlinear equations, curve fitting, numerical differentiation and integration. Explicit, implicit, and iterative techniques will be used in conjunction with finite difference, finite volume and finite element methods, with emphasis on applications in mechanical and aerospace engineering including aerodynamics, heat transfer, mechanisms of materials, and so on.

MAE 521. Advanced Thermodynamics 1. 3 Hours.
PR: MAE 321 or MAE 426. First and second laws of thermodynamics with emphasis on entropy production and availability (exergy); Maxwell's relationships and criteria for stability; equations of state and general thermodynamic equations for systems of constant chemical composition.

MAE 525. Heavy Duty Vehicle Emissions. 3 Hours.
PR: Graduate student standing in engineering or instructor consent. Present research and development of advanced heavy-duty engines and their use in vehicle powertrains. Study emissions formation and control from existing and developing heavy-duty vehicle system designs using conventional and hybrid propulsion systems.

MAE 526. Advanced Internal Combustion Engine. 3 Hours.
PR: MAE 425 with a minimum grade of C- or consent. An intermediate to advanced examination of internal combustion engine thermochemical processes, instrumentation, diagnostics, data analysis and modeling, with focus on preparing the student for advanced engine research.

MAE 528. Introduction to Fuel Cell Technology. 3 Hours.
PR: Graduate student standing in engineering or consent. Fuel cells definition, types and application areas, thermodynamics of fuel cells, introduction of electrochemistry, Nerst Potential, Butler-Volmer and Tafel equations, experimental techniques, computational techniques, fuel cell materials, fuel processing and storage, stack, and system design.

MAE 531. Fluid Mechanics 1. 3 Hours.

MAE 532. Dynamics of Viscous Fluids. 3 Hours.
PR: Consent. Derivation of and exact solutions for the Navier-Stokes equations; laminar boundary-layer theory, similarity solutions, and integral methods.

MAE 534. Fluid Flow Measurements. 3 Hours.
PR: MAE 336 or Consent. Principles and measurements of static and dynamic pressures and temperatures, velocity, and Mach number and forces. Optical techniques and photography. Design of experiments. Review of selected papers from the literature. (2 hr. lec., 3 hr. lab.).

MAE 543. Advanced Mechanics of Materials. 3 Hours.
PR: Consent. Shear flow and shear center; curved beams; unsymmetrical bending, energy methods in structural analysis; theories of failure; instability of structures; beams on elastic foundation.

MAE 561. Satellite Navigation. 3 Hours.
PR: MAE 411 and MAE 460 or consent. Examination of various segments of the Global Positioning System. Applications, error sources, and advanced methods for mitigating these errors sources. Estimation procedures, algorithms, and GPS processing will be introduced and utilized.

MAE 565. Artificial Intelligence Techniques in Mechanical and Aerospace Engineering. 3 Hours.
Introduction to solving complex problems in mechanical and aerospace engineering using genetic (evolutionary) algorithms, fuzzy logic-based modeling and control, and artificial neural networks.

MAE 580. Crystallography and Crystals. 3 Hours.
Introduction to the principles of structure of materials, and theory and applications of diffraction and imaging techniques for materials characterization using X-ray diffraction and transmission electron microscopy (TEM).

MAE 583. Thermodynamics and Kinetics of Materials. 3 Hours.
Fundamental concepts of thermodynamics and kinetics of materials. Classical thermodynamics. Examples of the application of thermodynamic concepts to the analysis of material systems.

MAE 593. Special Topics. 1-6 Hours.
A study of contemporary topics selected from recent developments in the field.

MAE 621. Advanced Thermodynamics 2. 3 Hours.
PR: MAE 521 or Consent. Thermodynamics of multi-component inert and reacting systems; equilibrium analysis; introduction to irreversible processes involving diffusion and chemical kinetics; application of concepts to heterogeneous systems.

MAE 623. Conduction Heat Transfer. 3 Hours.
PR: MAE 423 or Consent. Analytical and numerical solutions of steady and non-steady heat conduction problems in one-, two-, and three dimensional bodies; solution of linearized equations; applications include extended surfaces, moving surfaces, moving heat sources, and instrumentation techniques.

MAE 624. Convection Heat Transfer. 3 Hours.
PR: MAE 423 or Consent. Laminar and turbulent flows in forced and free convection systems; external and internal flows with application to heat exchanger design; introduction to aerodynamic heating.
MAE 625. Radiation Heat Transfer. 3 Hours.
PR: MAE 423 or consent. Classical derivation of black body radiation laws; gray body and non-gray analysis; radiant properties of materials, radiant transport analysis, specular-diffuse networks, gas radiation, thermal radiation measurements; analytical, numerical solutions, and study of selected publications. (3 hr. lec.).

MAE 631. Gas Dynamics. 3 Hours.

MAE 633. Computational Fluid Dynamics. 3 Hours.
PR: MAE 532 or equivalent. Finite difference methods; convergence and stability; Navier-Stokes equations; discretization methods; grid distribution; solution of difference equations; pressure coupling; application to conduction/convection, boundary layers, and recirculating flows; introduction to general purpose CFD codes.

MAE 635. Turbomachinery. 3 Hours.
PR: MAE 320 or Consent. Flow problems encountered in design of water, gas, and steam turbines, centrifugal and axial flow pumps and compressors, design parameters.

MAE 636. Fundamentals of Turbulent Flow. 3 Hours.
PR: MAE 532 or consent. Statistical theories of turbulence and recent applications. Basic experimental data and length and time scale analysis. Application of semi-empirical theories to pipe, jet, and boundary-layer flow.

MAE 640. Continuum Mechanics. 3 Hours.
PR: MAE 242 and MAE 243. Mathematical preliminaries including index notation; analysis of stress; analysis of deformation; fundamental laws, field equations, and constitutive equations; application to fluids and solids.

MAE 641. Theory of Elasticity 1. 3 Hours.
PR: Consent. Cartesian tensors; plane stress and plane strain; 2-D problems in Cartesian and polar coordinates; stress and strain in 3-D; general theorems; torsion of noncircular sections.

MAE 642. Intermediate Dynamics. 3 Hours.

MAE 643. Inelastic Behavior of Engineering Materials. 3 Hours.
PR: MAE 543 or Consent. Characterization and constitutive relations of engineering materials; nonlinear elasticity, plasticity, viscoelasticity and creep; numerical implementation.

MAE 644. Fracture Mechanics. 3 Hours.
PR: MAE 641. Linear-elastic and elastic-plastic fracture mechanics; fatigue, dynamic, and creep crack growth; fracture mechanics models for composite materials.

PR: Consent. Variational principles of mechanics and applications to engineering problems; principles of virtual displacements, minimum potential energy, and complementary energy, Castigliano’s theorem, Hamilton’s principle. Applications to theory of plates, shells, and stability.

MAE 646. Advanced Mechanics of Composite Materials. 3 Hours.
PR: MAE 446 or Consent. Manufacturing, testing, and diagnostics of composite materials. Anisotropic plates with cutouts. Inelastic behavior of polymer matrix composites. Analysis of advanced composites such as metal matrix, ceramic matrix, and textile.

MAE 648. Experimental Stress Analysis. 3 Hours.
PR: Consent. Strain gage techniques and instrumentation; stress analysis using optical methods such as photoelasticity and interferometric techniques; NDE and NDT or problems involving stress analysis. (2 hr. lec., 3 hr. lab.).

MAE 649. Microscopy of Materials. 3 Hours.

MAE 653. Advanced Vibration. 3 Hours.
PR: Consent. Dynamic analysis of multiple degree-of-freedom discrete vibrating systems; Lagrangian formulation; matrix and numerical methods; impact; mechanical transients.

MAE 656. Advanced Computer Aided Design. 3 Hours.
Geometric modeling; finite element meshing; design approaches, case studies using CAD principles; projects utilizing state-of-the-art CAD packages. (2 hr. lec., 3 hr. lab.).

MAE 660. Feedback Control in Mechanical Engineering. 3 Hours.
PR: Consent. Emphasis on design of control systems using classical, frequency domain, and time domain methods; advanced mathematical modeling of physical systems, compensation, stabilization, pole placement, state estimation; extensive use of computerized design tools, especially Matlab.
MAE 662. Robot Mechanics and Control. 3 Hours.
Kinematic and dynamic behavior of industrial robot manipulators; formulation of equations of motion for link joint space and end effector Cartesian space; path planning and trajectory motion control schemes.

MAE 663. Instrumentation in Engineering. 3 Hours.
PR: Consent. Theory of instrumentation suitable for measuring rapidly changing force, pressure, strain, temperature, vibration, etc.; computerized acquisition, analysis, and transmission of data; methods of noise reduction. (2 hr. lec., 3 hr. lab.).

MAE 686. Materials Science and Engineering Seminar. 1 Hour.
Mandatory seminar series for all materials science and engineering (MS&E) majors. Recent developments in materials science and engineering.

MAE 687. Materials Engineering. 3 Hours.
A study of materials engineering fundamentals emphasizing semiconductor, polymer, metal, and ceramic/cementitious material systems. Mechanical and physical properties, theoretical aspects, testing, design criteria, manufacturing, and economics of material systems. Laboratory testing and evaluation. (Equivalent to CE 687, CHE 687, EE 687, MINE 687, and IMSE 687.).

MAE 691. Advanced Topics. 1-6 Hours.
PR: Consent. Investigation of advanced topics not covered in regularly scheduled courses.

MAE 693. Special Topics. 1-6 Hours.
A study of contemporary topics selected from recent developments in the field.

MAE 694. Seminar. 1-6 Hours.
Special seminars arranged for advanced graduate students.

MAE 695. Independent Study. 1-9 Hours.
Faculty supervised study of topics not available through regular course offerings.

MAE 697. Research. 1-9 Hours.
PR: Consent. Research activities leading to thesis, problem report, research paper or equivalent scholarly project, or a dissertation. (Grading may be S/U.).

MAE 721. Fundamentals of Combustion. 3 Hours.
PR: MAE 321 or MAE 426. Thermodynamics, chemical kinetics, and diffusion of reacting gases; laminar and turbulent flames; flame stability and ignition.

MAE 733. Perfect Fluid Theory. 3 Hours.
PR: Consent. Conformal mapping including Schwarz-Christoffel and Joukowski transformations. Inviscid flows over airfoils, spheres, cones, wedges, and bodies of revolution. (3 hr. lec.).

MAE 741. Theory of Elasticity 2. 3 Hours.
PR: MAE 641. Complex variable methods, stress couples, nonlinear elasticity, numerical methods, potential methods, boundary value problems, and various special topics.

MAE 743. Theory of Elastic Stability. 3 Hours.
PR: Consent. Stability of discrete mechanical systems, energy theorems, buckling of beams, beam columns and frames, torsional buckling, buckling of plates and shells, and special topics.

MAE 744. Theory of Plates and Shells. 3 Hours.
PR: MAE 543 or Consent. Classical and modern theories of plates; dynamic response, nonlinear effects, and exact and approximate solutions of plates; application to rectangular and circular plates; membrane shells; shells with bending stiffness.

MAE 760. Advanced Topics in Control Theory. 3 Hours.
PR: MAE 660 or MAE 465. State feedback through eigenstructure assignment; Observers and Kalman filters; multiple-model adaptive estimation and control; parameter estimation; direct and indirect model-reference adaptive-control algorithms; introduction to neural networks.

MAE 790. Teaching Practicum. 1-3 Hours.
PR: Consent. Supervised practice in college teaching of Benjamin M. Statler College of Engineering and Mineral Resources courses. Note: This course is intended to insure that graduate assistants are adequately prepared and supervised when they are given college teaching responsibility. It will also present a mechanism for students not on assistantships to gain teaching experience. (Grading will be S/U.).

MAE 791. Advanced Topics. 1-6 Hours.
PR: Consent. Investigation of advanced topics not covered in regularly scheduled courses.

MAE 793. Special Topics. 1-6 Hours.
A study of contemporary topics selected from recent developments in the field.

MAE 795. Independent Study. 1-9 Hours.
Faculty supervised study of topics not available through regular course offerings.

MAE 797. Research. 1-9 Hours.
PR: Consent. Research activities leading to thesis, problem report, research paper or equivalent scholarly project, or a dissertation. (Grading may be S/U.).