Aerospace Engineering

Degrees Offered

• Masters of Science, Aerospace Engineering (M.S.A.E.)
• Doctor of Philosophy, Aerospace Engineering (Ph.D.)

Educational Objectives of the Departmental Graduate-Level Programs:

1. To provide high quality advanced master-level and Ph.D. level education to graduate engineering students to enable successful careers in technology development, innovation and research, with depth and breadth in one or several areas of the aerospace engineering discipline.
2. To develop the capacity of graduates to conduct independent research and/or technology development and innovation, through original contributions to the aerospace engineering discipline and to disseminate the results of their scholarly work.
3. To instill in graduates the drive for leadership in technology development, innovation and research and to contribute to the advancement of the profession in a societal and economic context.

The outcomes of the graduate programs in Aerospace Engineering are as follows:

• Holders of graduate degrees will have an expert-level understanding of the advanced principles of aerospace engineering, which include aerospace systems design, aircraft or spacecraft dynamics, stability and control, flight mechanics and simulation, advanced materials, vehicle propulsion, aerodynamics, aeroelasticity, and computational mechanics.
• Holders of graduate degrees will hold paramount the highest standards of ethical and professional responsibility in the practice of their profession to contribute to the well-being of society and to the advancement of the aerospace engineering profession.
• Holders of Ph.D. degrees will have furthered original research contributions to the state of the art in their specific areas of expertise and will be able to develop innovative research in order to advance the frontiers of knowledge, secure sponsored research, and disseminate its findings through scholarly publications.

Admissions

The applicant must first submit a completed on-line application, application fee, and transcripts of all college work (directly from the institution) to the WVU Office of Admissions. Each applicant is required to complete an applicant information form and have three recent reference letters (using standard forms available from the department) sent directly to the department; at least two of the three references should be from the institution last attended.

Regular Admissions Requirements

Minimum requirements for admission as a regular student into the graduate programs of the department are summarized as follows:

• An applicant for admission into the M.S. or the Ph.D. degree program must have earned a grade point average (GPA) of 3.0 or better (out of a possible 4.0) in all previous college work if he/she holds a B.S. or M.S. degree, respectively, from an accredited or internationally recognized program, as stated above.
• Applicants for admission into the B.S.M.S. degree track must have a grade point average of 3.5 or higher at the end of the first semester in the junior year of the curriculum. Applicants for admission into the direct-track from B.S. to Ph.D. degree option must have a grade point average of 3.5 or higher if they commence their graduate studies in the department as Ph.D. students or must have a cumulative grade point average of 4.0 if they transfer from the M.S. degree program by the end of their first year of graduate studies in the department.
• International students must demonstrate proficiency in communicating in English (a minimum TOFEL Score of 550, or IBT Score of 79, or IELTS Score of 6.5). (This requirement will be waived for applicants who have completed a recent four-year bachelor’s degree in the USA.)
• All international applicants who have not received their undergraduate degree in the USA are required to submit GRE general test scores with the engineering subject test score being optional. The GRE scores required for admission as a regular graduate student in the department need to be seventy-fourth percentile or higher in the Quantitative section (strictly enforced). The GRE scores for the verbal and analytical sections will be taken into consideration in the admission process.

Provisional Admissions

An applicant not qualifying for the admission status of regular graduate student, either due to marginally insufficient grade point average or GRE performance, incomplete credentials, or inadequate academic background, may be admitted as a provisional student at the discretion of the Admissions Committee of the department. Requirements for attaining regular student status must be stated in a letter of admission. Provisional students must sign a contract, which lists in detail all requirements that have to be met for attaining regular student status, typically no later than the end of the first semester at WVU.

All of the graduate degree programs offered by the department require the student to attain an overall grade point average of 3.0 or higher both in all the courses required for the degree program and in all the courses taken at WVU in order to meet graduation requirements. The cumulative grade point average (GPA) is calculated on the basis of courses only, and excludes credit for research, for which the received grade can be either S (satisfactory), or
U (unsatisfactory). Note: A grade of U in research is equivalent to a grade of F in a regular course and it can decrease drastically the GPA of a graduate student.

Doctoral Admissions

ADMISSION TO DOCTOR OF PHILOSOPHY PROGRAM

To be eligible for admission into the doctor of philosophy degree program with a major in aerospace or mechanical engineering, a candidate must hold or expect to receive (by the enrollment date) a M.S. degree in an engineering discipline from an institution which has an ABET accredited undergraduate program in engineering or an internationally recognized program in engineering (except for students qualified for the direct track to Ph.D. degree option, described below). Qualified candidates holding a M.S. degree in applied sciences can also be considered for admission into the Ph.D. program.

ADMISSION TO THE DIRECT-TRACK TO PH.D. DEGREE OPTION

The Department of Mechanical and Aerospace Engineering (MAE) offers a direct track option from the bachelor of science (B.S.) to the doctor of philosophy (Ph.D.) degree for prospective qualified students holding a B.S. degree in an engineering discipline, materials science, mathematics, or applied sciences from an accredited undergraduate program or an internationally recognized program. This is an accelerated track that provides outstanding candidates the option of earning a Ph.D. degree in less than five years after graduating from an undergraduate program by engaging early in their Ph.D. dissertation research without having to complete a research thesis for a master of science (M.S.) degree. To qualify for the direct track degree option, a candidate must have earned a cumulative grade point average (GPA) of 3.5/4.0 or higher in his/her undergraduate studies and attain a minimum of seventy-fourth percentile in the quantitative section of the standardized Graduate Record Examination (GRE). Students who are pursuing an M.S. degree in the MAE department have also the possibility of transferring into the direct track option in their third semester in the program, provided that they earn a GPA of at least 3.75/4.0 and attain a minimum of seventy-fourth percentile in the quantitative section of the GRE by the end of their first two semesters of graduate studies at WVU. Students admitted into the direct track option are considered to be Ph.D. students in the MAE department.

Curriculum in Master of Science in Aerospace Engineering

A candidate for the M.S. degree in aerospace engineering must comply with the rules and regulations as outlined in the WVU Graduate Catalog and the specific requirements of the Statler College and the Mechanical and Aerospace Engineering Department.

Program Requirements

All M.S. degree candidates are required to perform research (except those pursuing the coursework-only degree option) and follow a planned program of study. The student’s research advisor, in conjunction with the student’s Advising and Examining Committee (AEC) will be responsible for determining the plan of study appropriate to the student’s needs. The underlying principle of the planned program is to provide the students with the necessary support to complete their degree and prepare them for their career.

Curriculum Requirements

A minimum cumulative GPA of 3.0 is required in all courses.

A minimum of 60% of courses must be from 500 level or above.

Course Requirements

Thesis Option (30 credit hours)

- Technical Electives (6 credit hours)
- Mathematics Requirements (6 credit hours)
- Additional Courses (12 credit hours) - Any BIOM, CE, CHE, CHEM, CPE, CS, EE, IENG, MAE, MATH, MINE, PNGE, PHYS, SENG, or STAT courses 400-799, as approved by the student’s AEC

MAE 697

- Research (6 credit hours)

- Written Research Proposal

- Thesis

- Final Oral or Written Examination

Problem Report Option (33 credit hours)

- Technical Electives (6 credit hours)
- Mathematics Requirements (6 credit hours)
- Additional Courses (18 credit hours) - Any BIOM, CE, CHE, CHEM, CPE, CS, EE, IENG, MAE, MATH, MINE, PNGE, PHYS, SENG, or STAT courses 400-799, as approved by the student’s AEC

MAE 697

- Research (3 credit hours)

- Written Research Proposal

- Formal Written Report or Professional Report/Paper

- Final Oral or Written Examination

Coursework Option (33 credit hours)
Technical Electives (18 credit hours)

Mathematics Requirements (6 credit hours)

Additional Courses (9 credit hours) - Any BIOM, CE, CHE, CHEM, CPE, CS, EE, IENG, MAE, MATH, MINE, PNGE, PHYS, SENG, or STAT courses 400-799, as approved by the student’s AEC

Comprehensive Exam (Written or Oral)

Total Hours 30-33

MATHEMATICS REQUIREMENTS FOR ALL OPTIONS (6 CREDIT HOURS)

Select two of the following (at least one course with MATH prefix):

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 420</td>
<td>Numerical Analysis 1</td>
</tr>
<tr>
<td>MATH 441</td>
<td>Applied Linear Algebra</td>
</tr>
<tr>
<td>MATH 456</td>
<td>Complex Variables</td>
</tr>
<tr>
<td>MATH 521</td>
<td>Numerical Analysis</td>
</tr>
<tr>
<td>MATH 522</td>
<td>Numerical Solution of PDE</td>
</tr>
<tr>
<td>MATH 541</td>
<td>Modern Algebra</td>
</tr>
<tr>
<td>MATH 543</td>
<td>Linear Algebra</td>
</tr>
<tr>
<td>MATH 545</td>
<td>Number Theory 1</td>
</tr>
<tr>
<td>MATH 551</td>
<td>Real Variables 1</td>
</tr>
<tr>
<td>MATH 555</td>
<td>Complex Variables 1</td>
</tr>
<tr>
<td>MATH 560</td>
<td>Introduction to Dynamical Systems and Applications</td>
</tr>
<tr>
<td>MATH 563</td>
<td>Mathematics Modeling</td>
</tr>
<tr>
<td>MATH 564</td>
<td>Intermediate Differential Equations</td>
</tr>
<tr>
<td>MATH 567</td>
<td>Advanced Calculus</td>
</tr>
<tr>
<td>MATH 568</td>
<td>Advanced Calculus</td>
</tr>
<tr>
<td>MATH 573</td>
<td>Graph Theory</td>
</tr>
<tr>
<td>STAT 513</td>
<td>Design of Experiments</td>
</tr>
<tr>
<td>STAT 545</td>
<td>Applied Regression Analysis</td>
</tr>
<tr>
<td>STAT 561</td>
<td>Theory of Statistics 1</td>
</tr>
<tr>
<td>STAT 562</td>
<td>Theory of Statistics 2</td>
</tr>
<tr>
<td>MAE 515</td>
<td>Analytical Methods in Engineering</td>
</tr>
<tr>
<td>MAE 623</td>
<td>Conduction Heat Transfer</td>
</tr>
<tr>
<td>MAE 633</td>
<td>Computational Fluid Dynamics</td>
</tr>
<tr>
<td>MAE 640</td>
<td>Continuum Mechanics</td>
</tr>
<tr>
<td>MAE 645</td>
<td>Energy Methods in Applied Mechanics</td>
</tr>
<tr>
<td>CHE 531</td>
<td>Mathematical Methods in Chemical Engineering</td>
</tr>
<tr>
<td>EE 463</td>
<td>Digital Signal Processing Fundamentals</td>
</tr>
<tr>
<td>EE 465</td>
<td>Introduction to Digital Image Processing</td>
</tr>
<tr>
<td>EE 515</td>
<td>Linear Control Systems</td>
</tr>
<tr>
<td>EE 517</td>
<td>Optimal Control</td>
</tr>
<tr>
<td>IENG 518</td>
<td>Technology Forecasting</td>
</tr>
<tr>
<td>IENG 553</td>
<td>Applied Linear Programming</td>
</tr>
<tr>
<td>PHYS 461</td>
<td>Thermodynamics and Statistical Mechanics</td>
</tr>
<tr>
<td>PHYS 611</td>
<td>Introduction to Mathematical Physics</td>
</tr>
</tbody>
</table>

TECHNICAL AREA COURSES FOR THESIS OR PROBLEM REPORT OPTIONS (6 CREDIT HOURS)

Select two courses in a single core technical area from the following:

Area A: Fluid Mechanics and Aerodynamics (FMA)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE 532</td>
<td>Dynamics of Viscous Fluids</td>
</tr>
<tr>
<td>MAE 624</td>
<td>Convection Heat Transfer</td>
</tr>
<tr>
<td>or MAE 636</td>
<td>Fundamentals of Turbulent Flow</td>
</tr>
</tbody>
</table>

Area B: Thermal Sciences and Systems (TSS)
MAE 521 Advanced Thermodynamics 1
MAE 532 Dynamics of Viscous Fluids
MAE 624 Convection Heat Transfer

Area C: Dynamics and Controls (D&C)
MAE 642 Intermediate Dynamics
 or MAE 653 Advanced Vibrations
MAE 660 Feedback Control in Mechanical Engineering

Area D: Solid Mechanics and Design (SMD)
MAE 543 Advanced Mechanics of Materials
MAE 641 Theory of Elasticity 1
 or MAE 653 Advanced Vibrations

Area E: Materials Science (MS)
MAE 580 Crystallography and Crystals
MAE 583 Thermodynamics and Kinetics of Materials
MAE 649 Microscopy of Materials

TECHNICAL AREA COURSES FOR COURSEWORK OPTION (18 CREDIT HOURS)

Required Courses
MAE 521 Advanced Thermodynamics 1
MAE 532 Dynamics of Viscous Fluids
MAE 543 Advanced Mechanics of Materials
MAE 580 Crystallography and Crystals
MAE 653 Advanced Vibrations
MAE 660 Feedback Control in Mechanical Engineering

* Students who do not hold a baccalaureate degree in aerospace engineering will be required to take a set of undergraduate aerospace engineering courses above and beyond the minimum coursework requirements in order to overcome deficiencies in the aerospace engineering area.

Final Examination
M.S. students following the thesis or problem report option must prepare a written research proposal. The proposal must be approved by the student’s AEC at least one semester prior to the final oral examination.

All students, regardless of option, are required to pass a final oral or written examination, administered by their AEC, covering the thesis or problem report and/or related course material.

The students request for the comprehensive exam for students in the Coursework Only degree option must be filed at least four weeks in advance of the desired date of the exam. The comprehensive exam for students in the Coursework Only degree option must be passed at least 3 weeks before graduation.

Suggested Plan of Study
The plan below illustrates the Thesis Option. It is important for students to take courses in the order specified as much as possible; all prerequisites and concurrent requirements must be observed. A typical M.S.A.E degree program that completes degree requirements in two years is as follows.

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Hours</th>
<th>Spring</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Area Course</td>
<td>3</td>
<td>Technical Area Course</td>
<td>3</td>
</tr>
<tr>
<td>Math Course</td>
<td>3</td>
<td>Math Course</td>
<td>3</td>
</tr>
<tr>
<td>Additional Course</td>
<td>3</td>
<td>Additional Course</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Hours</th>
<th>Spring</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional Course</td>
<td>3</td>
<td>Additional Course</td>
<td>3</td>
</tr>
</tbody>
</table>
Curriculum in Doctor of Philosophy – Aerospace Engineering

A candidate for the Ph.D. degree with a major in aerospace engineering must comply with the rules and regulations as outlined in the WVU Graduate Catalog and the specific requirements of the Statler College and the Mechanical and Aerospace Engineering Department.

Program Requirements

The doctor of philosophy degree with a major in aerospace engineering is administered through the college’s interdisciplinary Ph.D. program. The research work for the doctoral dissertation must show a high degree of originality on the part of the student and must constitute an original contribution to the art and science of aerospace engineering.

All Ph.D. degree candidates are required to perform research and follow a planned program of study. The student’s research advisor, in conjunction with the student’s Advising and Examining Committee (AEC) will be responsible for determining the plan of study appropriate to the student’s needs. The underlying principle of the planned program is to provide the students with the necessary support to complete their degree and prepare them for their career.

The doctoral courses of study are selected to fit the particular interests and objectives of the student, with proper attention given to broadening related areas of study. The research work for the doctoral dissertation may entail a fundamental investigation into a specialized area or a broad and comprehensive study in a related subject.

All students pursuing a Ph.D. degree in the MAE department are expected to engage in research and complete and successfully defend a Ph.D. dissertation. They should identify a subject for their Ph.D. dissertation, form a five-member advisory and examining committee, and file a plan of study by the end of their second semester of enrollment in the graduate program. At least one member of the graduate faculty from outside the department is required to serve on the advisory and examining committee.

Curriculum Requirements

A minimum cumulative GPA of 3.0 is required in all courses.

Course Requirements

Technical Area Courses (3)

Select one course in the relevant core technical area from the following:

<table>
<thead>
<tr>
<th>Area</th>
<th>MAE Course</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>MAE 532</td>
<td>Dynamics of Viscous Fluids</td>
</tr>
<tr>
<td>A</td>
<td>MAE 624</td>
<td>Convection Heat Transfer</td>
</tr>
<tr>
<td>A</td>
<td>MAE 636</td>
<td>Fundamentals of Turbulent Flow</td>
</tr>
<tr>
<td>B</td>
<td>MAE 521</td>
<td>Advanced Thermodynamics 1</td>
</tr>
<tr>
<td>B</td>
<td>MAE 532</td>
<td>Dynamics of Viscous Fluids</td>
</tr>
<tr>
<td>B</td>
<td>MAE 624</td>
<td>Convection Heat Transfer</td>
</tr>
<tr>
<td>C</td>
<td>MAE 642</td>
<td>Intermediate Dynamics</td>
</tr>
<tr>
<td>C</td>
<td>MAE 653</td>
<td>Advanced Vibrations</td>
</tr>
<tr>
<td>C</td>
<td>MAE 660</td>
<td>Feedback Control in Mechanical Engineering</td>
</tr>
<tr>
<td>D</td>
<td>MAE 543</td>
<td>Advanced Mechanics of Materials</td>
</tr>
<tr>
<td>D</td>
<td>MAE 641</td>
<td>Theory of Elasticity 1</td>
</tr>
<tr>
<td>D</td>
<td>MAE 653</td>
<td>Advanced Vibrations</td>
</tr>
<tr>
<td>E</td>
<td>MAE 580</td>
<td>Crystallography and Crystals</td>
</tr>
<tr>
<td>E</td>
<td>MAE 583</td>
<td>Thermodynamics and Kinetics of Materials</td>
</tr>
<tr>
<td>E</td>
<td>MAE 649</td>
<td>Microscopy of Materials</td>
</tr>
</tbody>
</table>

Mathematics Requirements (6)

Select two of the following (at least one course with MATH prefix):

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 420</td>
<td>Numerical Analysis 1</td>
</tr>
</tbody>
</table>
MATH 441 Applied Linear Algebra
MATH 456 Complex Variables
MATH 521 Numerical Analysis
MATH 522 Numerical Solution of PDE
MATH 541 Modern Algebra
MATH 542 Linear Algebra
MATH 543 Number Theory 1
MATH 551 Real Variables 1
MATH 552 Complex Variables 1
MATH 560 Introduction to Dynamical Systems and Applications
MATH 563 Mathematics Modeling
MATH 564 Intermediate Differential Equations
MATH 566 Advanced Calculus
MATH 568 Advanced Calculus
MATH 573 Graph Theory
STAT 513 Design of Experiments
STAT 545 Applied Regression Analysis
STAT 561 Theory of Statistics 1
STAT 562 Theory of Statistics 2
MAE 515 Analytical Methods in Engineering
MAE 623 Conduction Heat Transfer
MAE 633 Computational Fluid Dynamics
MAE 640 Continuum Mechanics
MAE 645 Energy Methods in Applied Mechanics
CHE 531 Mathematical Methods in Chemical Engineering
EE 463 Digital Signal Processing Fundamentals
EE 465 Introduction to Digital Image Processing
EE 515 Linear Control Systems
EE 517 Optimal Control
IENG 518 Technology Forecasting
IENG 553 Applied Linear Programming
PHYS 461 Thermodynamics and Statistical Mechanics
PHYS 611 Introduction to Mathematical Physics

Research 24

Any BIOM, CE, CHEM, CPE, CS, EE, IENG, IH&S, MAE, MATH, MINE, PNGE, PHYS, SAFM, SENG, or STAT courses 500-799 9

Examinations
Qualifying Exam (Ph.D. qualifying examination)
Candidacy Exam (Dissertation research proposal defense)
Final Exam (Final dissertation defense)
The "Publication Requirement" must be satisfied prior to scheduling the final dissertation defense

Total Hours 42

* Students who do not hold a baccalaureate degree in aerospace engineering are required to take a set of undergraduate aerospace courses above and beyond the minimum coursework requirements.
 For these students, a minimum of fifty-four hours of coursework and thirty hours of independent research beyond a bachelor’s degree, or eighteen hours of coursework and twenty-four hours of independent research beyond an M.S. degree are required.

** PhD students who also earn their MS degree in the MAE Department are expected to select the third core course in their technical area.

First Year

<table>
<thead>
<tr>
<th>Fall</th>
<th>Hours</th>
<th>Spring</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Area Course</td>
<td>3</td>
<td>Math Course</td>
<td>3</td>
</tr>
<tr>
<td>Math Course</td>
<td>3</td>
<td>Additional Course</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Second Year</td>
<td></td>
<td>Third Year</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>Fall</td>
<td>Hours</td>
<td>Spring</td>
<td>Hours</td>
</tr>
<tr>
<td>Additional Course</td>
<td>3</td>
<td>Additional Course</td>
<td>3</td>
</tr>
<tr>
<td>MAE 797</td>
<td>3</td>
<td>MAE 797</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Total credit hours: 42

JOURNAL PAPER PUBLICATION REQUIREMENT FOR ALL PHD STUDENTS:

Beginning with all PhD students admitted for the summer or fall of 2016 and thereafter, every Ph.D. student, prior to his/her dissertation defense, will be required to provide written documentation that they have received formal proof of submission of either:

a.) At least one manuscript, generally co-authored with their research supervisor and about some portion of their PhD dissertation research, to an archival journal for publication, or

b.) At least one patent disclosure, also generally about some portion of their PhD dissertation research.

This publication requirement will have to be satisfied prior to scheduling the defense of the Ph.D. Dissertation.

Major Learning Outcomes

AEROSPACE ENGINEERING

The MAE Department is committed to deliver high quality education and research experience to all graduate students in order to enable them to achieve success in their careers, though the following Learning Goals:

- Expertise, depth and breadth in a chosen field of aerospace engineering.
- Capacity to engage in original research, advanced technological discovery and innovation in order to advance the frontiers of knowledge in the science of the aerospace engineering discipline.
- Capacity of effective high level communication in order to document, disseminate and transfer knowledge of the science of the aerospace engineering discipline in educational, research or applied workplace settings.
- Appreciation and understanding of the role of the science of the aerospace engineering discipline in a global and societal context.

Thesis Based Master's Degrees

All the requirements for thesis based master's degrees (M.S.A.E., M.S.M.E. and M.S.M.S.&E.) in the MAE Department must be completed within eight years preceding the student’s graduation. All students in these programs are required to engage in research, complete and successfully defend a master's thesis. They must identify a subject for their thesis research, form a three-member advisory and examining committee (AEC), and file a plan of study by the end of their second semester of enrollment in the graduate program. A minimum of twenty-four credit hours of coursework with a minimum overall GPA of 3.0/4.0 and six credit hours of M.S. thesis research are required for the thesis based master's degrees. Students must pass a final examination administered by their advisory and examining committee before being certified for the degree. All thesis based master's degree students have to comply with core requirements by selecting a "core area" and taking two of the courses listed in that area, and in addition they have to comply with the mathematics requirements by taking two courses from an approved list. Four additional courses can be selected from a list of technical electives, or from the core and mathematics lists to complete the coursework requirements, with no more than three courses at the 400 level.

Course Based Master's Degree

A course-only master's degree option is available (M.S.E.), in which students are required to complete thirty-three credit hours of coursework with a minimum overall GPA of 3.0/4.0 and pass a comprehensive examination administered by an advisory and examining committee. Students pursuing a course-only master's degree option are not eligible to receive financial support from the MAE Department. All the requirements for this degree option must also be completed within eight years preceding the student's graduation.

Ph.D. Degrees

The MAE Department offers Ph.D. Programs in Aerospace Engineering, in Mechanical Engineering and in Materials Science and Engineering. These programs require a minimum of eighteen credit hours of graduate level coursework plus a minimum of twenty-four credit hours of research. Students in the Ph.D. program must take and pass the Ph.D. Qualifier examination by the second semester of the program with a second attempt no later than
the third semester in the program if necessary. After the qualifier examination, students are expected to produce a dissertation proposal and defend it before a five-member advising and examining committee (AEC). Subsequent the successful proposal defense, students must comply with the journal paper publication (or patent disclosure) requirement in order to attain Ph.D. Candidacy. Finally Ph.D. candidates must successfully defend a Ph.D. dissertation and submit it to WVU library through the ETD protocol to fulfill all the requirements for the degree.

COURSES

MAE 515. Analytical Methods in Engineering. 3 Hours.
PR: Consent. Index notation for determinants, matrices, and quadratic forms; linear vector spaces, linear operators including differential operators; calculus of variations, eigenvalue problems, and boundary value problems.

MAE 521. Advanced Thermodynamics 1. 3 Hours.
PR: MAE 321 or MAE 426. First and second laws of thermodynamics with emphasis on entropy production and availability (exergy); Maxwell's relationships and criteria for stability; equations of state and general thermodynamic equations for systems of constant chemical composition.

MAE 525. Heavy Duty Vehicle Emissions. 3 Hours.
PR: Graduate student standing in engineering or instructor consent. Present research and development of advanced heavy-duty engines and their use in vehicle powertrains. Study emissions formation and control from existing and developing heavy-duty vehicle system designs using conventional and hybrid propulsion systems.

MAE 526. Advanced Internal Combustion Engine. 3 Hours.
PR: MAE 425 with a minimum grade of C- or consent. An intermediate to advanced examination of internal combustion engine thermochemical processes, instrumentation, diagnostics, data analysis and modeling, with focus on preparing the student for advanced engine research.

MAE 528. Introduction to Fuel Cell Technology. 3 Hours.
PR: Graduate student standing in engineering or consent. Fuel cells definition, types and application areas, thermodynamics of fuel cells, introduction of electrochemistry, Nerst Potential, Butler-Volmer and Tafel equations, experimental techniques, computational techniques, fuel cell materials, fuel processing and storage, stack, and system design.

MAE 531. Fluid Mechanics 1. 3 Hours.

MAE 532. Dynamics of Viscous Fluids. 3 Hours.
PR: Consent. Derivation of and exact solutions for the Navier-Stokes equations; laminar boundary-layer theory, similarity solutions, and integral methods.

MAE 534. Fluid Flow Measurements. 3 Hours.
PR: MAE 336 or Consent. Principles and measurements of static and dynamic pressures and temperatures, velocity, and Mach number and forces. Optical techniques and photography. Design of experiments. Review of selected papers from the literature. (2 hr. lec., 3 hr. lab.).

MAE 543. Advanced Mechanics of Materials. 3 Hours.
PR: Consent. Shear flow and shear center; curved beams; unsymmetrical bending, energy methods in structural analysis; theories of failure; instability of structures; beams on elastic foundation.

MAE 561. Satellite Navigation. 3 Hours.
PR: MAE 411 and MAE 460 or consent. Examination of various segments of the Global Positioning System. Applications, error sources, and advanced methods for mitigating these errors sources. Estimation procedures, algorithms, and GPS processing will be introduced and utilized.

MAE 565. Artificial Intelligence Techniques in Mechanical and Aerospace Engineering. 3 Hours.
Introduction to solving complex problems in mechanical and aerospace engineering using genetic (evolutionary) algorithms, fuzzy logic-based modeling and control, and artificial neural networks.

MAE 580. Crystallography and Crystals. 3 Hours.
Introduction to the principles of structure of materials, and theory and applications of diffraction and imaging techniques for materials characterization using X-ray diffraction and transmission electron microscopy (TEM).

MAE 583. Thermodynamics and Kinetics of Materials. 3 Hours.
Fundamental concepts of thermodynamics and kinetics of materials. Classical thermodynamics. Examples of the application of thermodynamic concepts to the analysis of material systems.

MAE 593. Special Topics. 1-6 Hours.
A study of contemporary topics selected from recent developments in the field.

MAE 621. Advanced Thermodynamics 2. 3 Hours.
PR: MAE 521 or Consent. Thermodynamics of multi-component inert and reacting systems; equilibrium analysis; introduction to irreversible processes involving diffusion and chemical kinetics; application of concepts to heterogeneous systems.

MAE 623. Conduction Heat Transfer. 3 Hours.
PR: MAE 423 or Consent. Analytical and numerical solutions of steady and non-steady heat conduction problems in one-, two-, and three dimensional bodies; solution of linearized equations; applications include extended surfaces, moving surfaces, moving heat sources, and instrumentation techniques.
MAE 624. Convection Heat Transfer. 3 Hours.
PR: MAE 423 or Consent. Laminar and turbulent flows in forced and free convection systems; external and internal flows with application to heat exchanger design; introduction to aerodynamic heating.

MAE 625. Radiation Heat Transfer. 3 Hours.
PR: MAE 423 or consent. Classical derivation of black body radiation laws; gray body and non-gray analysis; radiant properties of materials, radiant transport analysis, specular-diffuse networks, gas radiation, thermal radiation measurements; analytical, numerical solutions, and study of selected publications. (3 hr. lec.).

MAE 631. Gas Dynamics. 3 Hours.

MAE 633. Computational Fluid Dynamics. 3 Hours.
PR: MAE 532 or equivalent. Finite difference methods; convergence and stability; Navier-Stokes equations; discretization methods; grid distribution; solution of difference equations; pressure coupling; application to conduction/convection, boundary layers, and recirculating flows; introduction to general purpose CFD codes.

MAE 635. Turbomachinery. 3 Hours.
PR: MAE 320 or Consent. Flow problems encountered in design of water, gas, and steam turbines, centrifugal and axial flow pumps and compressors, design parameters.

MAE 636. Fundamentals of Turbulent Flow. 3 Hours.
PR: MAE 532 or consent. Statistical theories of turbulence and recent applications. Basic experimental data and length and time scale analysis. Application of semi-empirical theories to pipe, jet, and boundary-layer flow.

MAE 640. Continuum Mechanics. 3 Hours.
PR: MAE 242 and MAE 243. Mathematical preliminaries including index notation; analysis of stress; analysis of deformation; fundamental laws, field equations, and constitutive equations; application to fluids and solids.

MAE 641. Theory of Elasticity 1. 3 Hours.
PR: Consent. Cartesian tensors; plane stress and plane strain; 2-D problems in Cartesian and polar coordinates; stress and strain in 3-D; general theorems; torsion of noncircular sections.

MAE 642. Intermediate Dynamics. 3 Hours.

MAE 643. Inelastic Behavior of Engineering Materials. 3 Hours.
PR: MAE 543 or Consent. Characterization and constitutive relations of engineering materials; nonlinear elasticity, plasticity, viscoelasticity and creep; numerical implementation.

MAE 644. Fracture Mechanics. 3 Hours.
PR: MAE 641. Linear-elastic and elastic-plastic fracture mechanics; fatigue, dynamic, and creep crack growth; fracture mechanics models for composite materials.

PR: Consent. Variational principles of mechanics and applications to engineering problems; principles of virtual displacements, minimum potential energy, and complementary energy, Castigliano's theorem, Hamilton's principle. Applications to theory of plates, shells, and stability.

MAE 646. Advanced Mechanics of Composite Materials. 3 Hours.
PR: MAE 446 or Consent. Manufacturing, testing, and diagnostics of composite materials. Anisotropic plates with cutouts. Inelastic behavior of polymer matrix composites. Analysis of advanced composites such as metal matrix, ceramic matrix, and textile.

MAE 648. Experimental Stress Analysis. 3 Hours.
PR: Consent. Strain gage techniques and instrumentation; stress analysis using optical methods such as photoelasticity and interferometric techniques; NDE and NDT or problems involving stress analysis. (2 hr. lec., 3 hr. lab.).

MAE 649. Microscopy of Materials. 3 Hours.

MAE 653. Advanced Vibrations. 3 Hours.
PR: Consent. Dynamic analysis of multiple degree-of-freedom discrete vibrating systems; Lagrangian formulation; matrix and numerical methods; impact; mechanical transients.

MAE 656. Advanced Computer Aided Design. 3 Hours.
Geometric modeling; finite element meshing; design approaches, case studies using CAD principles; projects utilizing state-of-the-art CAD packages. (2 hr. lec., 3 hr. lab.).
MAE 660. Feedback Control in Mechanical Engineering. 3 Hours.
PR: Consent. Emphasis on design of control systems using classical, frequency domain, and time domain methods; advanced mathematical modeling of physical systems, compensation, stabilization, pole placement, state estimation; extensive use of computerized design tools, especially Matlab.

MAE 662. Robot Mechanics and Control. 3 Hours.
Kinematic and dynamic behavior of industrial robot manipulators; formulation of equations of motion for link joint space and end effector Cartesian space; path planning and trajectory motion control schemes.

MAE 663. Instrumentation in Engineering. 3 Hours.
PR: Consent. Theory of instrumentation suitable for measuring rapidly changing force, pressure, strain, temperature, vibration, etc.; computerized acquisition, analysis, and transmission of data; methods of noise reduction. (2 hr. lec., 3 hr. lab.).

MAE 668. Materials Science and Engineering Seminar. 1 Hour.
Mandatory seminar series for all materials science and engineering (MS&E) majors. Recent developments in materials science and engineering.

MAE 687. Materials Engineering. 3 Hours.
A study of materials engineering fundamentals emphasizing semiconductor, polymer, metal, and ceramic/cementitious material systems. Mechanical and physical properties, theoretical aspects, testing, design criteria, manufacturing, and economics of material systems. Laboratory testing and evaluation. (Equivalent to CE 687, CHE 687, EE 687, MINE 687, and IMSE 687.).

MAE 691. Advanced Topics. 1-6 Hours.
PR: Consent. Investigation of advanced topics not covered in regularly scheduled courses.

MAE 693. Special Topics. 1-6 Hours.
A study of contemporary topics selected from recent developments in the field.

MAE 694. Seminar. 1-6 Hours.
Special seminars arranged for advanced graduate students.

MAE 695. Independent Study. 1-6 Hours.
Faculty supervised study of topics not available through regular course offerings.

MAE 697. Research. 1-15 Hours.
PR: Consent. Research activities leading to thesis, problem report, research paper or equivalent scholarly project, or a dissertation. (Grading may be S/U.).

MAE 721. Fundamentals of Combustion. 3 Hours.
PR: MAE 321 or MAE 426. Thermodynamics, chemical kinetics, and diffusion of reacting gases; laminar and turbulent flames; flame stability and ignition.

MAE 733. Perfect Fluid Theory. 3 Hours.
PR: Consent. Conformal mapping including Schwarz-Christoffel and Joukowski transformations. Inviscid flows over airfoils, spheres, cones, wedges, and bodies of revolution. (3 hr. lec.).

MAE 741. Theory of Elasticity 2. 3 Hours.
PR: MAE 641. Complex variable methods, stress couples, nonlinear elasticity, numerical methods, potential methods, boundary value problems, and various special topics.

MAE 743. Theory of Elastic Stability. 3 Hours.
PR: Consent. Stability of discrete mechanical systems, energy theorems, buckling of beams, beam columns and frames, torsional buckling, buckling of plates and shells, and special topics.

MAE 744. Theory of Plates and Shells. 3 Hours.
PR: MAE 543 or Consent. Classical and modern theories of plates; dynamic response, nonlinear effects, and exact and approximate solutions of plates; application to rectangular and circular plates; membrane shells; shells with bending stiffness.

MAE 760. Advanced Topics in Control Theory. 3 Hours.
PR: MAE 660 or MAE 465. State feedback through eigenstructure assignment; Observers and Kalman filters; multiple-model adaptive estimation and control; parameter estimation; direct and indirect model-reference adaptive-control algorithms; introduction to neural networks.

MAE 790. Teaching Practicum. 1-3 Hours.
PR: Consent. Supervised practice in college teaching of Benjamin M. Statler College of Engineering and Mineral Resources courses. Note: This course is intended to insure that graduate assistants are adequately prepared and supervised when they are given college teaching responsibility. It will also present a mechanism for students not on assistantships to gain teaching experience. (Grading will be S/U.).

MAE 791. Advanced Topics. 1-6 Hours.
PR: Consent. Investigation of advanced topics not covered in regularly scheduled courses.

MAE 793. Special Topics. 1-6 Hours.
A study of contemporary topics selected from recent developments in the field.

MAE 795. Independent Study. 1-9 Hours.
Faculty supervised study of topics not available through regular course offerings.
MAE 797. Research. 1-15 Hours.
PR: Consent. Research activities leading to thesis, problem report, research paper or equivalent scholarly project, or a dissertation. (Grading may be S/U).

MAE 798. Thesis or Dissertation. 1-6 Hours.
PR: Consent. This is an optional course for programs that wish to provide formal supervision during the writing of student reports (698), or dissertations (798). Grading is normal.

MAE 799. Graduate Colloquium. 1-6 Hours.
PR: Consent. For graduate students not seeking coursework credit but who wish to meet residency requirements, use the University's facilities, and participate in its academic and cultural programs. Note: Graduate students who are not actively involved in coursework or research are entitled, through enrollment in their department's 699/799 Graduate Colloquium to consult with graduate faculty, participate in both formal and informal academic activities sponsored by their program, and retain all of the rights and privileges of duly enrolled students. Grading is S/U; colloquium credit may not be counted against credit requirements for masters programs. Registration for one credit of 699/799 graduate colloquium satisfies the University requirement of registration in the semester in which graduation occurs.
MAE P101. . 3 Hours.
MAE P140. . 3 Hours.
MAE P211. . 3 Hours.
MAE P232. . 3 Hours.
MAE P241. . 3 Hours.
MAE P242. . 3 Hours.
MAE P243. . 3 Hours.
MAE P244. . 3 Hours.
MAE P245. . 3 Hours.
MAE P246. . 3 Hours.
MAE T201. . 3 Hours.
MAE T240. . 3 Hours.
MAE T301. . 3 Hours.
MAE T304. . 3 Hours.
MAE T318. . 3 Hours.
MAE T322. . 3 Hours.
MAE T333. . 1 Hour.
MAE T334. . 3 Hours.
MAE T335. . 3 Hours.
MAE T336. . 4 Hours.
MAE T340. . 3 Hours.
MAE T404. . 3 Hours.
MAE T405. . 1 Hour.
MAE T406. . 3 Hours.
MAE T407. . 3 Hours.
MAE T408. . 3 Hours.
MAE T410. . 4 Hours.
MAE T425. . 3 Hours.
MAE T430. . 3 Hours.
MAE T434. . 3 Hours.
MAE T435. . 3 Hours.
MAE T439. . 3 Hours.
MAE T440. . 3 Hours.
MAE T445. . 3 Hours.
MAE T449. . 3 Hours.
MAE T455. . 3 Hours.
MAE T456. . 3 Hours.
MAE T463. . 3 Hours.
MAE T465. . 3 Hours.
MAE T467. . 3 Hours.
MAE T470. . 1-4 Hours.
MAE T471. . 3 Hours.
MAE T474. . 3 Hours.
MAE T475. . 3 Hours.
MAE T476. . 3 Hours.
MAE T480. . 1-3 Hours.
MAE T490. . 3 Hours.
MAE T491. . 3 Hours.