Geology

Degrees Offered

- Master of Science
- Doctor of Philosophy

Nature of the Program

The graduate program in geology at WVU provides study opportunities in the following areas:

- Hydrogeology and environmental geology with strengths in flow and contaminant-transport modeling, mine reclamation, shallow geophysics, floods, and debris flows
- Basin analysis and sedimentary geology with strengths in seismic modeling, basin structures, deposystem analysis, sequence stratigraphy, biostratigraphy, paleoecology, diagenesis, and plate tectonics
- Energy geology and geophysics with strengths in the exploration and development of oil, gas, and coal; the computational analysis of hydrocarbon systems; and environmental impacts of fossil fuel usages

Research Linkages Around Morgantown

The WV Geological and Economic Survey (WVGES), located five miles from Morgantown, makes available laboratory equipment, fossil collections, cataloged drill cuttings and core, and subsurface logs from deep wells in the region. WVGES also offers students work and thesis opportunities in coal resources and petroleum geology. Several survey geologists are adjunct faculty.

The National Energy Technology Laboratory (NETL) of the U.S. Department of Energy laboratory located in Morgantown carries out and funds research on fossil-fuel resources and environmental problems. NETL projects support geology faculty and graduate-student research.

Extensive mining in the Appalachian region provides an excellent opportunity for students to study the environmental effects of coal extraction. The WVU geology faculty collaborates with the National Mine Land Reclamation Center (NMLRC) based on the WVU Evansdale campus. The NMLRC is the main center for coordination of acid-mine drainage research in the United States. WVU Geology has instrumented groundwater research sites in the region for both training and research.

The department houses the Statewide GIS Technical Center, the central source for GIS resources in West Virginia. The tech center is responsible for scanning and digitization of USGS, DLGs, DOQs, and a host of other data products. The center provides technical-support services for the development and operation of GIS in West Virginia. A limited number of RA opportunities are available related to center activities.

Facilities

COMPUTER FACILITIES AND NETWORK

Research and teaching computing facilities in the department are outstanding and are centered around a Windows client-server network. The research cluster has access to more than ten terabytes of redundant networked storage based on a series of RAID servers as well as diverse networked printers, large-format plotters, large-format digitizers, and scanners. The teaching cluster provides interactive computing resources for 125 students on networked computers. Classroom demonstration facilities are available in every teaching lab. The research cluster includes many workstations with dual-format displays. All resources are regularly upgraded with a replacement period of one to two years. Clusters for the GEO workgroup are linked to the WVGIS center and have gateway access to the university backbone. The entire building is networked. The department houses the GeoVirtual Lab which is centered around a four-walled immersive CAVE environment.

SOFTWARE RESOURCES

The department maintains software for instructional and research usage. A full range of common applications software is available on all network machines. In addition, statistical packages allow students to undertake detailed statistical analysis, whereas graphical analysis packages (TruFlite, Surfer, Geographix, RockWorks) enable users to render both 2-D and 3-D surfaces. GIS licenses include ARCGIS which is accessible to students for integration of complex geological and geophysical data. ERDAS IMAGINE provides a suite of image-processing tools for analyzing remotely sensed data. Dynamic Graphics EarthVision provides an interactive 3-D visualization environment. AutoCAD, Adobe Illustrator, and other graphics design packages allow accurate rendering of technical diagrams.

State-of-the-art geological and geophysical modeling and processing software are available for instructional and research use. Landmark Inc. GeoGraphix Discovery Suite, Seismic Micro Technology’s Kingdom Suite, and Schlumberger’s Petral software provide state-of-the-art tools for analysis of seismic reflection data and geophysical logs. Seismic processing capability is provided through Landmark’s ProMax 2-D, 3-D, and VSP. We use Sensors and Software’s EKKO View Deluxe software for processing and display of ground penetrating radar data. Interpex’s IXID software is available for forward and inverse modeling of resistivity and terrain conductivity data. Northwest Geophysical Associates’ GM-SYS software is used in the forward and inverse modeling of gravity and magnetic data. A host of Landmark products including Discovery Suite, Seisworks, Strat-works, and seismic modeling packages enhance geophysical and subsurface studies. We have recently improved our capability in integrated subsurface analysis
through the addition of IHS Petra, Schlumberger’s Interactive Petrophysics for reservoir property analysis, and Petrel. The focus of these products is on collaborative work-flows that unite geophysics, geology, and reservoir engineering domains.

Software for groundwater simulation includes aquifer characterization packages (AQTESOLV), finite-difference flow and particle-tracking codes (MODFLOW2000, MODPATH3), solute-transport codes (MT3-D, MODFLOWT), and preprocessors (Groundwater Vistas). Streamflow-modeling capabilities include HEC-2 step-backwater and peak value flood frequency software.

For structural geology studies we use 2-D and 3-D move (Midland Valley) and TriShear (created by R. Almendinger) in addition to standard structural analysis software. Basin modeling and evaluation of the generation of hydrocarbons are carried out with the GENEX (Baisip-Franlab) software.

Laboratory And Field Instrumentation

GEOLOGICAL

The department has a rock-crushing room equipped with jaw crusher and disk grinder as well as laboratories devoted to geological sample preparation which include standard mineral separation equipment (Frantz magnetic separator, Gemeni table, and heavy liquids set-up).

GEOPHYSICAL

The department owns a Geonics very low frequency sensor, an EM34 terrain conductivity meter, a Bison Instruments 12 Channel Seismograph, and a Geometrics magnetometer. The geophysics facility also offers large format plotting on twenty-four to forty-two inch HP plotters. Additional survey equipment includes a Leitz Model 2100 Total Station Survey System and a two-station GPS Traveler. Wide spectrums of software resources (see above) enhance geophysical research.

GEOCHEMICAL

Department laboratories own a Philips PW1800 X-ray diffraction unit for solid-state mineral analyses and a Philips PW9550 energy dispersion spectrometer for elemental analyses. A complete suite of equipment is available for the analysis of organic-rich materials including a Leco sulfur analyzer, a Leco proximate analyzer for moisture, carbon, and ash content, a Leco CHN analyzer for coal and shale, a Leco calorimeter, and a Biorad FTIR with microscope attachment to do FTIR analysis of microscopic entities in rocks. Water analytical facilities include a Dionex 100 Ion Chromatograph and a Beckmen Autotitrator. Outside White Hall, Varian sequential ICP and Finnemat ICP-MS units for water analysis are available to geology faculty in the WV Water Research Institute.

HYDROGEOLOGICAL

Groundwater field equipment includes an array of Global Water vented pressure transducer/datalogger instruments, Grundfos 4” and Redi-Flo 2 pumps, Geotech peristaltic pumps and flow-through sampling cells, and analog well recorders as well as a variety of generators, sampling pumps, flumes, pH and conductivity meters, bailers, and current meters.

QUATERNARY GEOLOGY AND GEOMORPHOLOGY

Quaternary geology and geomorphology research is served by a particle-size analysis laboratory as well as field instrumentation such as Garmin and Trimble GPS units, laser levels, and a Leica TC400 electronic distance meter.

REMOTE SENSING

The Remote Sensing Laboratory has a comprehensive suite of computing and field equipment. The laboratory operates two portable full-range (0.4 to 2.5 micrometer) field spectroradiometers and an aerial small format photography system based on two Nikon cameras. The laboratory shares a digital ADAR infra-red aerial acquisition system with biology and resource management. The ADAR system can be deployed in both helicopters and fixed wing aircraft. Remote sensing software includes site licenses for ERDAS Imagine, ENVI/IDL, and ARC/INFO image analysis and GIS software.

FACULTY

CHAIR
- J. Steven Kite - Ph.D. (University of Wisconsin)

ASSOCIATE CHAIR FOR GEOLOGY
- Helen M. Lang - Ph.D. (University of Oregon)

PROFESSORS
- Robert E. Behling - Ph.D. (Ohio State University)
 Earth Science Education and Geomorphology
- Timothy Carr - Ph.D. (University of Wisconsin-Madison)
 Sedimentary and Petroleum Geology
- Joseph J. Donovan - Ph.D. (Pennsylvania State University)
Hydrogeology, Quaternary Paleochemistry
• Gregory A. Elmes - Ph.D. (Pennsylvania State University)
• Trevor M. Harris - Ph.D. (University of Hull)
• Thomas W. Kammer - Ph.D. (Indiana University)
• Henry W. Rauch - Ph.D. (Pennsylvania State University)
• John J. Renton - Ph.D. (West Virginia University)
• Timothy A. Warner - Ph.D. (Purdue University)
• Thomas Wilson - Ph.D. (West Virginia University)

PROFESSORS EMERITI
• Alan C. Donaldson - Ph.D. (Pennsylvania State University)
• Robert C. Shumaker - Ph.D. (Cornell University)
• Richard A. Smosna - Ph.D. (University of Illinois)

ASSOCIATE PROFESSORS
• Dengliang Gao - Ph.D. (Duke University)
• Amy Hessl - Ph.D. (University of Arizona)
• J. Steven Kite - Ph.D. (University of Wisconsin-Madison)
• Helen M. Lang - Ph.D. (University of Oregon)
• Jaime Toro - Ph.D. (Stanford University)
• Dorothy J. Vesper - Ph.D. (Pennsylvania State University)

ASSISTANT PROFESSORS
• Joseph Lebold - Ph.D. (West Virginia University)
• Eungul Lee - Ph.D. (University of Colorado)
• Brenden McNeil - Ph.D. (Syracuse University)
• Shikha Sharma - Ph.D. (University of Lucknow, India)
• Amy Weislogel - Ph.D. (Stanford University)

CLINICAL ASSISTANT PROFESSOR
• Rick Landenberger - Ph.D. (West Virginia University)

POST DOCTORAL RESEARCHER
• Maria Perez - Ph.D. (University of Michigan)
Admission Procedures and Prerequisites

Applicants for graduate studies in geology must have as a minimum requirement a bachelor’s degree and an overall grade point average of at least 3.0. Acceptance by the Department of Geology and Geography is necessary before admission of any prospective student to the program. All candidates for a graduate degree in geology must submit scores in the general aptitude tests of the Graduate Record Examination. Applicants seeking admission and financial support for the fall semester should apply by February 1. For spring semester, apply by October 1. Write to the department for an application package or download it from the website (see above).

Students seeking admission to the master’s program or the Ph.D. program must complete the equivalents of all allied science and mathematics courses required for the B.S. in geology at WVU, plus the following geology courses:

Similar courses from other universities or relevant experiences may be substituted if approved during admission review. A requirement may be waived by the committee if the student can demonstrate competence in that subject area.

GPA Requirements

During graduate study a minimum grade point average of 3.0 must be maintained in required formal courses in geology and cognate fields for the master’s degree and 3.3 for the Ph.D. A student who fails to maintain the required average at the completion of any semester will be placed on probationary status and allowed one academic year (two semesters) to attain the required average. If this is unsuccessful, the student will be dropped from enrollment in the graduate program.

Master of Science

Distribution Requirements

Students are required to take courses specified by their advisory committee, with whom they meet at the beginning of each semester. Students must take approved graduate courses from at least five different faculty from any department in the university.

Approved graduate courses in biology, chemistry, physics, computer science, mathematics, engineering, soil sciences, business, or law may be taken as outside courses by geology graduate students. Students are free to take as many courses as they choose outside the department as long as the coursework is approved by their advisory committee.

No later than the beginning of the second semester in residence, the prospective candidate must choose one of the options leading to the master of science (M.S.) degree in geology.

Research Option

<table>
<thead>
<tr>
<th>Geology Courses</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL 697 Research</td>
<td>6</td>
</tr>
<tr>
<td>GEOL 699 Graduate Colloquium</td>
<td>2</td>
</tr>
<tr>
<td>Total Hours</td>
<td>32</td>
</tr>
</tbody>
</table>

Research Option

This has been the traditional option for the master of science in geology. Students considering continued studies (doctor of philosophy) or seeking employment in an area of geological research should choose this option. A minimum of twenty-four formal course hours, six research hours (GEOL 697), and two hours of GEOL 699 are required for graduation. A thesis based on original research under direction of a research committee is also required. With consent of the candidate’s research committee, the field work need not be done while in residence at WVU.

Thirty-two hours are required to graduate: (Twenty-four hours course-based, six hours research, and two hours colloquium) including certain required courses specified by the advisor.

Professional Studies Option

<table>
<thead>
<tr>
<th>Geology Courses</th>
<th>33</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOL 692 Directed Studies</td>
<td>6</td>
</tr>
<tr>
<td>GEOL 699 Graduate Colloquium</td>
<td>2</td>
</tr>
<tr>
<td>Total Hours</td>
<td>41</td>
</tr>
</tbody>
</table>

Professional Studies Option

This option is designed specifically for students seeking experience in preparing and presenting professional problems. Students choosing this option typically expect to seek professional employment in the profession using the master’s as their terminal degree. A minimum of thirty-three formal course hours, six directed study research hours (GEOL 692), and two hours of GEOL 699 are required for graduation. The research hours are in lieu of a thesis and are designed to simulate the work of professional geologists as they seek solutions to open-ended problems within a limited time frame.
Experience in presentation of problems and solutions are an integral part of the program. Research hours may be earned in conjunction with off-campus experiences by consent of the candidate’s advisory committee.

Forty-one hours are required to graduate: thirty-three hours course-based, six hours research and two hours colloquium, including certain required courses specified by the advisory committee.

Doctor of Philosophy

The candidate for the doctor of philosophy must complete a program of courses outlined by the candidate’s doctoral research committee. A candidacy preliminary examination must be successfully completed within one year after enrollment. The proposal defense and oral examination must also be successfully completed. Work on original research is to be presented in a dissertation and defended in an oral examination. Participation in two GEOL 796 Graduate Seminars is required. No other formal course requirements exist; these are chosen by the student in conjunction with his or her research committee.

COURSES

GEOL 510. Computer Aided Subsurface Intrp. 3 Hours.
PR: GEOL 311 and GEOL 341. Develop subsurface interpretations from integrated geological, geophysical and engineering databases in a computer workstation environment. Construct maps and 3D visualizations of subsurface structure, seismic horizons, layer properties, etc., for prospect location and subsurface assessment.

GEOL 511. Sedimentary Geology in Ireland. 2 Hours.
PR: GEOL 311. Field course to study the sedimentary rock of Dingle, Ireland- their origin, classification, and economic importance. (Course is an extended field trip during spring break. Student is responsible for all expenses.).

GEOL 511A. Sedimentary Geol-Ireland:Trvl. 1 Hour.
Travel portion of GEOL 511. See GEOL 511 for description.

GEOL 525. Problems in Geomorphology. 0-4 Hours.

GEOL 543. Tectonics. 3 Hours.
PR: GEOL 341 and GEOL 311; undergraduates need Consent. Investigation of patterns and processes of large-scale deformation mechanisms that shape the earth. Focuses on the structural evolution and modeling process of various plate boundaries.

GEOL 554. Environmntal/Explratn-Geophys 2. 3 Hours.
PR: PHYS 102 and (MATH 156 or GEOL 351) or Consent. Basic and applied studies of reflection and refraction seismology and ground penetrating radar methods will be covered with an emphasis on the use of computers in the modeling and interpretation of seismic data.

GEOL 556. 3-D Seismic Visualization. 3 Hours.
This course focuses on the application of 3-D seismic data visualization and interpretation technologies to the characterization of subsurface structure, facies, and reservoirs, with particular reference to hydrocarbon exploration and CO2 sequestration.

GEOL 558. Seismic Attribute. 3 Hours.
PR: GEOL 341 and GEOL 311 and MATH 155. The effective seismic attribute technologies and attribute interpretation workflows, their application to the characterization of subsurface structures, facies, and reservoir properties, with particular reference to hydrocarbon exploration and CO2 sequestration.

GEOL 562. Quantitative Hydrogeology. 3 Hours.
PR: MATH 156 or GEOL 351 and GEOL 463 or Consent. Mathematical and computer analysis of groundwater flow, aquifer systems, radial-flow solutions; well/aquifer test methods; superposition, boundaries; dispersive/advective transport.

GEOL 564. Environmental Hydrogeology. 4 Hours.
PR: GEOL 101 and GEOL 102 and GEOL 463 and (PR or CONC: GEOL 562). Seminar reviewing groundwater occurrence, flow, quality, and exploration in various geologic terrains; groundwater pollution and dewatering; and groundwater technology. Includes topical literature review.

GEOL 579. Applied Petroleum Geoscience. 3 Hours.
Students work in teams to conduct integrated characterization of a petroleum reservoir, develop numerical simulation, consider technical options, perform economic analyses and make a final report to the company/organization.

GEOL 580. Organic Contaminant GeoChem. 3 Hours.
This course focuses on fundamental chemical properties and structures of organic contaminants that control their functionality, fate, and transport in the environment. Natural organic matter and inorganic phases are discussed relative to contaminant mobility.

GEOL 585. Optical Mineralogy & Petrology. 3 Hours.
PR: GEOL 285. Introduction to the optical properties of minerals and the use of the petrographic microscope. Interpretation of sedimentary, igneous, and metamorphic rocks based on microscopic examination of thin sections. (Offered alternate years.).

GEOL 586. Advanced Isotope Geochemistry. 3 Hours.
PR: GEOL 486. Advance the understanding of isotopic systems by comprehensive discussion of selected research publications. Laboratory exercises will provide hands-on training in stable isotope measurement techniques. Study topics will focus on use of isotopes to address research questions in variety of fields, including geology, biology, forensics, environmental sciences and energy.
GEOL 588. Aqueous Geochemistry. 3 Hours.
PR: GEOL 101 and CHEM 112 or CHEM 116, or Consent. Review of basic chemical principles as they apply to aqueous geochemical environments. Properties of water and the types, sources, and controls of the common and environmentally significant chemical species dissolved in water.

GEOL 591A-Z. Advanced Topics. 1-6 Hours.
PR: Consent. Investigation of advanced topics not covered in regularly scheduled courses.

GEOL 593A-Z. Special Topics. 1-6 Hours.
A study of contemporary topics selected from recent developments in the field.

GEOL 594A-Z. Seminar. 1-6 Hours.
Special seminars arranged for advanced graduate students.

GEOL 610. Advanced Stratigraphy. 3 Hours.

GEOL 611. Carbonate Sedimentology. 4 Hours.

GEOL 615. Stratigraphy of Porous Media. 3 Hours.
PR: GEOL 311. Advanced discussion of the deposition of clastic sediments, chemistry of carbonates, sequence stratigraphy, porosity development in sandstones and limestones, flow of oil through rock.

GEOL 616. Advanced Sedimentation. 4 Hours.
PR: GEOL 311 or Consent. (Required field trips at student’s expense.) Origin of sedimentary rocks; principles involved in interpretation of ancient geography, climates, animals, and plants. Emphasis on detrital sediments and rocks.

GEOL 619. Advanced Petroleum Geology. 3 Hours.
Petroleum source rocks, thermal and biogenic maturity, primary and secondary migration of oil, porosity development in reservoirs, permeability. (Required weekend field trip.)

GEOL 621. Advanced Fluvial Geomorphology. 4 Hours.
PR: GEOL 321 or GEOG 321 or Consent. Analysis of stream processes, landforms, deposits, including paleohydrology and Appalachian surficial geology. (Required weekend field trips at student’s expense; also listed as GEOG 521.)

GEOL 622. Surficial/Glacial Geology. 4 Hours.
PR: GEOL 321 or GEOG 321 or Consent. Analysis of late Cenozoic landscapes, especially those caused by glaciers or otherwise influenced by global climate change. (Required weekend field trips at student’s expense; also listed as GEOG 522.)

GEOL 632. Paleoecology. 3 Hours.
PR: GEOL 331 and GEOL 311 or Consent. Methods of paleoecologic analysis in sedimentary geology. Topics include trace fossil analysis, shell biogeochemistry, community paleoecology, biofacies analysis of basins, and Precambrian paleoecology.

GEOL 642. Advanced Structural Geology. 3 Hours.
PR: GEOL 341. Theoretical and observational aspects of the development of geological structures. Problems ranging from the microstructural to the orogenic scale will be addressed.

GEOL 645. Basin Structures. 4 Hours.
PR: GEOL 341 and GEOL 311 or equivalent. The origin, development, and distribution of basins and the structure found within basins throughout the world are studied. The distribution of energy-related minerals related to basins and structural accumulations is emphasized.

GEOL 655. Remote Sensing Principles. 3 Hours.
Mapping of earth features using aerial and satellite-borne sensors, image enhancement, geo-referencing, and classification. (Also listed as GEOG 655.)

GEOL 659. Quantive Methods in GeoScience. 3 Hours.
PR: STAT 312 or STAT 511 or Consent. Brief review and introduction to multivariate quantitative techniques as applied to geology and geography.

GEOL 665. Groundwater Modeling. 4 Hours.
PR: GEOL 562 or Consent. Theory and application of groundwater flow modeling, focusing on MODFLOW; numerical methods; discretization and boundaries; parameterization and calibration; problems and case histories.

GEOL 666. Karst Geology. 3 Hours.
PR: Consent. Review of karst terrain hydrogeology and geomorphology, emphasizing origins and nature of caves, sinkholes and other karst landforms, environmental problems of karst, and its water and mineral/petroleum resources.

GEOL 680. Masters Project Research. 1-5 Hours.
Planning and presentation of a professional project, including proposal, work plan execution, and project report. Status reports and timeline planning. Must be taken in two consecutive semesters, totaling to 6 credits.

GEOL 687. Physical Geochemistry. 3 Hours.
GEOL 690. Teaching Practicum. 1-3 Hours.
PR: Consent. Supervised practice in college teaching of geology. Note: This course is intended to insure that graduate assistants are adequately prepared and supervised when they are given college teaching responsibility. It also provides a mechanism for students not on assistantships to gain teaching experience. (Grading will be P/F.)

GEOL 691A-Z. Advanced Topics. 1-6 Hours.
PR: Consent. Investigation of advanced topics not covered in regularly scheduled courses.

GEOL 692A-Z. Directed Study. 1-6 Hours.
Directed study, reading, and/or research.

GEOL 693A-Z. Special Topics. 1-6 Hours.
A study of contemporary topics selected from recent developments in the field.

GEOL 694A-Z. Seminar. 1-6 Hours.
Special seminars arranged for advanced graduate students.

GEOL 695. Independent Study. 1-6 Hours.
Faculty supervised study of topics not available through regular course offerings.

GEOL 697. Research. 1-15 Hours.
PR: Consent. Research activities leading to thesis, problem report, research paper or equivalent scholarly project, or a dissertation. (Grading may be S/U.)

GEOL 698. Thesis. 1-6 Hours.
PR: Consent. This is an optional course for programs that wish to provide formal supervision during the writing of student reports (698), or dissertations (798). Grading is normal.

GEOL 699. Graduate Colloquium. 1-6 Hours.
PR: Consent. For graduate students not seeking course work credit, but who wish to meet residence requirements, use the University facilities and participate in it’s academic and cultural programs. NOTE: Graduate students not actively involved in course work or research or enrolled, through enrollment in his/her departments Graduate Colloquium, to consult with graduate faculty, participate in both formal and informal academic activities sponsored by his/her program and retain all of the rights and privileges of duly enrolled students. Grading is P/F; colloquium credit may not be counted against credit requirements for master’s programs.

GEOL 755. Advanced Remote Sensing. 3 Hours.
PR: GEOG 655 or GEOL 655 or consent. Collection, processing and classification of remotely sensed data, including optical, thermal, radar, and topographic information. (2 hour lecture, 1 hour laboratory.) (Also listed as GEOG 755.)

GEOL 790. Teaching Practicum. 1-3 Hours.
PR: Consent. Supervised practice in college teaching of geology. Note: This course is intended to insure that graduate assistants are adequately prepared and supervised when they are given college teaching responsibility. It will also present a mechanism for students not on assistantships to gain teaching experience. (Grading will be P/F.)

GEOL 791A-Z. Advanced Topics. 1-6 Hours.
PR: Consent. Investigation of advanced topics not covered in regularly scheduled courses.

GEOL 794A-Z. Seminar. 1-6 Hours.
Special seminars arranged for advanced graduate students.

GEOL 795. Independent Study. 1-9 Hours.
Faculty supervised study of topics not available through regular course offerings.

GEOL 796. Graduate Seminar. 1 Hour.
PR: Consent. Each graduate student will present at least one seminar to the assembled faculty and graduate student body of his or her program.

GEOL 798. Dissertation. 1-6 Hours.
PR: Consent. This is an optional course for programs that wish to provide formal supervision during the writing of student reports (698), or dissertations (798). Grading is normal.

GEOL 799. Graduate Colloquium. 1-6 Hours.
PR: Consent. For graduate students not seeking coursework credit but who wish to meet residency requirements, use of the University’s facilities, and participate in its academic and cultural programs. Note: Graduate students who are not actively involved in coursework or research are entitled, through enrollment in their department’s 699/799 Graduate Colloquium to consult with graduate faculty, participate in both formal and informal academic activities sponsored by their program, and retain all of the rights and privileges of duly enrolled students. Grading is P/F; colloquium credit may not be counted against credit requirements for masters programs. Registration for one credit of 699/799 graduate colloquium satisfies the University requirement of registration in the semester in which graduation occurs.

GEOL 930. Professional Development. 1-6 Hours.
Professional development courses provide skill renewal or enhancement in a professional field or content area (e.g., education, community health, geology). These tuition-waived continuing education courses are graded on a pass/fail grading scale and do not apply as graduate credit toward a degree program.