Biology

Degrees Offered
• Master of Science
• Doctor of Philosophy

Nature of the Program
The Department of Biology’s graduate program is dedicated to scholarship in academics and research. The objectives of the program are to empower students through the following:

1. Recognize important biological problems
2. Design, execute, and analyze experiments aimed at solving important problems
3. Communicate their findings in oral and written form
4. Foster an awareness of the social and political issues of the day related to biology
5. Create a desire to continue independent study after graduation

The Department of Biology offers graduate courses and research that lead to M.S. and Ph.D. degrees in biology. The focal areas of research in the graduate program are: biochemistry and molecular biology, bioinformatics, genetics, genomics and evolutionary biology, biology education, cell and developmental biology, ecology, forensic biology, neurobiology, behavior and physiology, and plant sciences.

FACULTY

CHAIRPERSON
• Richard B. Thomas - Ph.D. (Clemson University)

PROFESSORS
• Ashok Bidwai - Ph.D. (Utah State University)
 Biochemical and Molecular Genetic Analysis of Protein Kinases
• Jonathan R. Cumming - Ph.D. (Cornell University)
 Plant Physiology, Rhizosphere Ecology
• Jorge A. Flores - Ph.D. (George Washington University)
 Endocrinology of Reproduction, Signal Transduction
• James B. McGraw - Ph.D. (Duke University)
 Plant Ecology, Plant Population Biology, Conservation Biology
• Richard B. Thomas - Ph.D. (Clemson University)
 Physiological Plant Ecology, Global Environmental Change

ASSOCIATE PROFESSOR
• Jim Belanger - Ph.D. (University of Toronto)
 Neural Basis of Behavior, Adaptive Behavior, Comparative Physiology
• Clifton P. Bishop - Ph.D. (University of Virginia)
 Developmental and Molecular Biology of Drosophila
• Kevin C. Daly - Ph.D. (University of Arizona)
 Psychophysics and Neurophysiology of Manduca Sexta
• Stephen DiFazio - Ph.D. (Oregon State University)
 Plant Genomics, Ecological Genetics
• Sarah M. Farris - Ph.D. (University of Illinois)
 Nervous System Evolution and Development, Entomology
• William T. Peterjohn - Ph.D. (Duke University)
 Biogeochemistry, Ecosystem Ecology

ASSISTANT PROFESSOR
• Andrew Dacks - Ph.D. (University of Arizona)
 Neural Basis of Behavior States, Nervous System Evolution
• Jennifer Gallagher - Ph.D. (Yale University)
Master of Science

PREREQUISITES AND REQUIREMENTS

Applicants for the master of science program in biology must show, at the minimum, the equivalent of a bachelor’s degree from an accredited institution; an undergraduate grade point average of 3.0; a fortieth percentile ranking for the verbal, quantitative, and analytical sections of the Graduate Record Examination; and an adequate science and mathematics background (normally one year of mathematics, one year of physics, and two years of chemistry). Certain international applicants must have a TOEFL score greater than 250 for the computer-based exam, which is roughly equivalent to more than 600–603 for the paper-based test and roughly equivalent to more than 100 for the internet-based test.

Applicants are requested to submit a one to two-page essay describing past research experience and expectations for career goals. Three letters of recommendation from individuals familiar with the applicant’s academic performance are required as well as official transcripts from all colleges or universities attended. Prior to admission, a member of the faculty must agree to provisionally serve as the student’s faculty advisor. The Department of Biology’s Graduate Committee reviews the applicant’s records and makes the admission decisions.

The WVU general requirements for the master of science are outlined elsewhere in the graduate catalog. Students in the biology M.S. program may apply up to six hours of research credit toward the thirty-hour requirement; the remaining twenty-four hours of credit must be earned in graduate courses that reflect a diversified exposure to biology. The establishment of an advisory committee and the generation of a program of study are explained in detail in the department’s Graduate Student Handbook. A final oral examination is administered by the advisory committee after the program of study has been completed and the thesis has been submitted.

Doctor of Philosophy

PROGRAM

The program for the degree of doctor of philosophy reflects a flexible, research-oriented approach geared to develop the interests, capabilities, and potentials of mature students. Applicants must have met all the entrance requirements listed above for the master of science program, but a fiftieth percentile ranking or higher in the verbal quantitative and analytical section of the Graduate Record Examination is expected. Acceptance into the Ph.D. program is by vote of the Graduate Committee of the Department of Biology. This committee ensures that all entrance requirements are met or that provisions have been made to remedy the deficiencies, and that facilities and personnel are adequate to support the program to a successful conclusion.

Each student admitted to the Ph.D. program works under the close supervision of a faculty research advisor and an advisory committee; details on the composition and establishment of an advisory committee are available in the department’s Graduate Student Handbook. Students must have a program of study formulated and approved by the end of the second semester of entering the Ph.D. program; all deficiencies must have been removed earlier. Significant deviations from an established program of study require approval from the advisory committee and the Graduate Committee.

EXAMINATIONS AND DISSERTATION PROPOSAL

The advisory committee is responsible for overseeing the progress of the student and for administering and judging performance in the required examinations. The advisory committee ensures that all of the Department of Biology, Eberly College of Arts and Sciences, and University requirements are met during the course of the student’s program of study. The program of study outlines the coursework to be taken in support of the proposed research.
Students must successfully complete a preliminary exam with written and oral components before being promoted to candidacy for the Ph.D. The preliminary exam is given no later than the end of the third semester in residence. All doctoral students must also write and defend a research proposal (the proposal exam) no later than the end of the fourth semester in residence.

CANDIDACY

Successful passage of the preliminary examination leads to promotion to candidacy. Because the qualifying examination attests to the academic competence of the student who will become an independent researcher or practitioner, the examination cannot precede the conferring of the degree by an extended period. Consequently, doctoral candidates are allowed no more than five years in which to complete remaining degree requirements (http://catalog.wvu.edu/graduate/advisingcoursesdegrees/#Doctoral_Coursework). The expected time to completion of the Ph.D. degree is four-five years; however, all requirements for a graduate degree must be completed within a period of eight years, starting with the initial enrollment after the most recent degree. The final examination consists of the submission of a completed and acceptable written dissertation and an oral dissertation defense. A formal departmental seminar covering the dissertation research must be presented before graduation.

COURSES

BIOL 576. Computational Neuroscience. 4 Hours.
PR: Consent. This course focuses on the tools and concepts used to probe and characterize the dynamics of neurons, neural networks and neural coding mechanisms. Lectures introducing discussion sessions of the current research literature complement computer laboratories where the student learns programming skills, analytical tools and neural modeling methods used in computational neuroscience research.

BIOL 577. CNS Evolution and Development. 3 Hours.
PR: BIOL 219 and BIOL 348 or Equivalent. Origin and evolution of the animal nervous system, focusing on developmental and genetic mechanisms underlying structural modifications that serve as the basis for the evolution of behavioral repertoires.

BIOL 579. Advances-Systems Neuroscience. 3 Hours.
PR: BIOL 348 or Consent. fundamental principles of nervous system organization with an emphasis on interactions between neurons and the consequences for behavior. There will be a focus on recent advances in out understanding of each organizational principle.

BIOL 593A-Z. Special Topics. 0-6 Hours.
A study of contemporary topics selected from recent developments in the field.

BIOL 620. Genomics. 3 Hours.
PR: BIOL 219 or consent. Advanced elective examining biology and evolution on a genome-wide scale. Topics include fields of study and methods of DNA sequence acquisition and annotation, including exploration of the human genome and its contribution to disease discovery.

BIOL 651. Evolution-Infectious Diseases. 3 Hours.
The application of phylogenetics, microbiology, immunology, and epidemiology towards comprehending the evolution of infectious diseases. Students will develop a fundamental understanding of the significance of evolution and ecology towards infectious disease emergence and control.

BIOL 690. Teaching Practicum. 1-3 Hours.
PR: Consent. Supervised practice in college teaching of biology. Note: This course is intended to insure that graduate assistants are adequately prepared and supervised when they are given college teaching responsibility. It also provides a mechanism for students not on assistantships to gain teaching experience. (Grading will be S/U.)

BIOL 691A-Z. Advanced Topics. 1-6 Hours.
PR: Consent. Investigation of advanced topics not covered in regularly scheduled courses.

BIOL 692A-Z. Directed Study. 1-6 Hours.
Directed study, reading, and/or research.

BIOL 693A-Z. Special Topics. 1-6 Hours.
A study of contemporary topics selected from recent developments in the field.

BIOL 695. Independent Study. 1-6 Hours.
Faculty supervised study of topics not available through regular course offerings.

BIOL 697. Research. 1-15 Hours.
PR: Consent. Research activities leading to thesis, problem report, research paper or equivalent scholarly project, or a dissertation. (Grading may be S/U.)

BIOL 698. Thesis. 1-6 Hours.
PR: Consent. This is an optional course for programs that wish to provide formal supervision during the writing of student reports (698), or dissertations (798). Grading is normal.

BIOL 711. Molecular Basis of Virology. 3 Hours.
PR: BIOL 219 or equivalent or consent. Lectures on bacterial, animal, and plant viruses; their structure, replication, and interaction with host cells. Discussion of the contributions virology has made to the understanding of molecular mechanisms in biology.

BIOL 714. Advances in Protein Science. 3 Hours.
An examination of proteins from a structural, functional, and biological perspective. Discussions will include biochemical, genetic, phylogenetic, structural, computational, and proteomic approaches.
BIOL 715. ECM in Cell Signaling. 3 Hours.
The course emphasizes the fundamental role that that extracellular matrix plays in the process of morphogenesis, differentiation, development and maintenance of the differentiated state.

BIOL 737. Developmental Biology. 3 Hours.
PR: BIOL 336 or equiv., organic chemistry or biochemistry, or consent. The molecular and cellular basis of differentiation and morphogenesis. (Offered in fall of odd years.).

BIOL 738. Fundamentals of Gerontology. 3 Hours.
PR: MDS 212 or consent. An advanced multidisciplinary examination of current research in biological, psychological, and sociological issues of human aging and the ways in which these impinge on the individual to create both problems and new opportunities. (Also listed as PSYC 524.).

BIOL 752. Physiological Plant Ecology. 3 Hours.
PR: BIOL 350 and consent. Advanced studies on the interactions between plants and their environment focusing on whole-plant carbon exchange, water relations, and nutrient uptake, with reference to specific biomes.

BIOL 753. Water-Nutrient Relations-Plant. 3 Hours.
PR: BIOL 350 and consent. Advanced studies on water and nutrient acquisition, use, and transformation in plants with focus on plant-soil interactions, symbiotic associations, and acclimation and adaption mechanisms operating in plants.

BIOL 754. Plant Growth and Development. 3 Hours.
PR: BIOL 350 and consent. Advanced studies of the mechanisms and patterns underlying growth and development, with emphasis on hormonal regulation and molecular processes in plants.

BIOL 761. Ecosystem Dynamics. 3 Hours.
PR: Consent. A survey of our current understanding of the biogeochemistry that occurs at and near the surface of the Earth. Emphasis is placed on the biogeochemical cycles of carbon, nitrogen, phosphorus, and sulfur. The origin and dynamics of the atmosphere, lithosphere and hydrosphere are also considered. (Offered in even-numbered years).

BIOL 762. Plant Population Biology. 3 Hours.
PR: Graduate status or undergraduate status with the completion of BIOL 221 and the instructor’s permit. Plant population biology exams the interplay of ecological theory and the real world of experimental ecology of natural populations using a case study approach. Each student will research a current topic in greater depth.

BIOL 790. Teaching Practicum. 1-3 Hours.
PR: Consent. Supervised practice in college teaching of biology. Note: This course is intended to insure that graduate assistants are adequately prepared and supervised when they are given college teaching responsibility. It will also present a mechanism for students not on assistantships to gain teaching experience. (Grading will be S/U.).

BIOL 791A-Z. Advanced Topics. 1-6 Hours.
PR: Consent. Investigation of advanced topics not covered in regularly scheduled courses.

BIOL 792A-Z. Directed Study. 1-6 Hours.
Directed study, reading, and/or research.

BIOL 793A-Z. Special Topics. 1-6 Hours.
A study of contemporary topics selected from recent developments in the field.

BIOL 794A-Z. Seminar. 1-6 Hours.
Special seminars arranged for advanced graduate students.

BIOL 795. Independent Study. 1-9 Hours.
Faculty supervised study of topics not available through regular course offerings.

BIOL 796. Graduate Seminar. 1 Hour.
PR: Consent. Each graduate student will present at least one seminar to the assembled faculty and graduate student body of his or her program.

BIOL 797. Research. 1-15 Hours.
PR: Consent. Research activities leading to thesis, problem report, research paper, or equivalent scholarly project, or a dissertation. (Grading may be S/U.).

BIOL 798. Dissertation. 1-6 Hours.
PR: Consent. This is an optional course for programs that wish to provide formal supervision during the writing of student reports (698), or dissertations (798). Grading is normal.

BIOL 799. Graduate Colloquium. 1-6 Hours.
PR: Consent. For graduate students not seeking coursework credit but who wish to meet residency requirements, use of the University’s facilities, and participate in its academic and cultural programs. Note: Graduate students who are not actively involved in coursework or research are entitled, through enrollment in their department’s 699/799 Graduate Colloquium to consult with graduate faculty, participate in both formal and informal academic activities sponsored by their program, and retain all of the rights and privileges of duly enrolled students. Grading is P/F; colloquium credit may not be counted against credit requirements for masters programs. Registration for one credit of 699/799 graduate colloquium satisfies the University requirement of registration in the semester in which graduation occurs.
BIOL 930. Professional Development. 1-6 Hours.
Professional development courses provide skill renewal or enhancement in a professional field or content area (e.g., education, community health, geology.) These tuition-waived continuing education courses are graded on a pass or fail grading scale and do not apply as graduate credit toward a degree program.