Cancer Cell Biology

sweed@hsc.wvu.edu

Degrees Offered

• Doctor of Philosophy
• Joint Doctor of Medicine and Doctor of Philosophy

Research interests include biochemical, molecular, and cellular basis of cancer origin and progression. Current research areas include the following:

• **Tumor Microenvironment**: Tumor cell resistance to anoikis, effects of chemotherapy on the bone marrow microenvironment, stem cell regulation, leukemia/stromal interactions, effects of the extracellular matrix on angiogenesis and tumor cell invasion.
• **Mechanisms of Metastasis**: Role of proteases in cell motility, regulation of the actin cytoskeleton in invadopodia formation and migration, signaling pathways in invasion and metastasis, imaging of metastasis in animal models.
• **Genetic Regulation of Cancer**: Tumor suppressor genes and transcriptional regulation, post-translational modifications in transcriptional regulation.
• **Heavy Metals and Cancer**: Effects of heavy metals on signal transduction pathways governing angiogenesis and tumor cell motility.
• **Signal Transduction in Cancer**: Receptor tyrosine kinase signaling in cancer growth and metastasis, non-receptor tyrosine kinases in cell adhesion and proliferation, ROS in tumor progression, lipid kinase signaling in angiogenesis.
• **Cancer Bioinformatics**: Biomarker classification in cancer, predictive models of carcinogenesis.

Cancer cell biology investigators working in these research areas routinely incorporate biochemical, molecular, cellular, animal, and computational-based techniques that are currently utilized at the forefront of leading basic cancer research laboratories around the world. The main tumor types that are the current focus of cancer cell biology investigators are based on cancers with disproportionate incidences in West Virginia, including breast, leukemia, ovarian, cervical, lung, and head and neck cancers.

The doctor of philosophy program in cancer cell biology is designed to expose Ph.D. and M.D./Ph.D. level graduate students to a wide spectrum of opportunities available in basic and translational cancer research. In addition to mechanistic and therapeutic approaches to studying problems in cancer at the bench, students have the opportunity for exposure to more clinical elements of cancer practice, including participation in tumor boards, shadowing clinicians, and participation in the design and approval of clinical trials. The cancer cell biology program at WVU is a member of the Cancer Biology Training Consortium (CABTRAC), a national organization of similar cancer-specific Ph.D. programs that interact through annual regional and national meetings to improve and refine Ph.D. cancer training. Graduates of the cancer cell biology program are therefore well-equipped to enter into a number of different career paths. These include postdoctoral research, biotechnology, industry, government, science writing, core facilities management, and legal counsel as examples.

Qualifying Examination

The qualifying examination consists of two parts. The written portion is conducted at the end of the first year of study and is an evaluation of the student’s performance and aptitude conducted by the rotation mentors the student had during their first year. Students are judged on their competency at the bench, in-depth knowledge of each research topic they worked on, overall enthusiasm, and potential for success at the Ph.D. level. After successful completion of the second academic year, the students take an oral examination that consists of the writing and defense of the student’s research dissertation project in the format of a NIH grant proposal. Upon successful completion of both elements of the qualifying examination, the student is admitted to candidacy for the degree of doctor of philosophy.

Faculty

Graduate Program Director

• Dr. Scott Weed - Ph.D. (Yale University)